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To my students

. .. Progress in design of new structures seems to be unlimited.

Last sentence of article: “The Use of the Electronic
Computer in Structural Analysis,” by K. J. Bathe
(undergraduate student), published in Impact, Journal of

the University of Cape Town Engineering Society, pp. 57—
61, 1967.



Preface

Finite element procedures are now an important and frequently indispensable part of
engineering analysis and design. Finite element computer programs are now widely used in
practically all branches of engineering for the analysis of structures, solids, and fluids.

My objective in writing this book was to provide a text for upper-level undergraduate
and graduate courses on finite element analysis and to provide a book for self-study by
engineers and scientists.

With this objective in mind, I have developed this book from my earlier publication
Finite Element Procedures in Engineering Analysis (Prentice-Hall, 1982). I have kept the
same mode of presentation but have consolidated, updated, and strengthened the earlier
writing to the current state of finite element developments. Also, I have added new sections,
both to cover some important additional topics for completeness of the presentation and to
facilitate (through exercises) the teaching of the material discussed in the book.

This text does not present a survey of finite element methods. For such an endeavor,
anumber of volumes would be needed. Instead, this book concentrates only on certain finite
element procedures, namely, on techniques that I consider very useful in engineering
practice and that will probably be employed for many years to come. Also, these methods
are introduced in such a way that they can be taught effectively—and in an exciting
manner —to students.

An important aspect of a finite element procedure is its reliability, so that the method
can be used in a confident manner in computer-aided design. This book emphasizes this
point throughout the presentations and concentrates on finite element procedures that are
general and reliable for engineering analysis.

Hence, this book is clearly biased in that it presents only certain finite element
procedures and in that it presents these procedures in a certain manner. In this regard, the
book reflects my philosophy toward the teaching and the use of finite element methods.

Xiii



Xiv Preface

While the basic topics of this book focus on mathematical methods, an exciting and
thorough understanding of finite element procedures for engineering applications is
achieved only if sufficient attention is given to both the physical and mathematical charac-
teristics of the procedures. The combined physical and mathematical understanding greatly
enriches our confident use and further development of finite element methods and is there-
fore emphasized in this text.

These thoughts also indicate that a collaboration between engineers and mathemati-
cians to deepen our understanding of finite element methods and to further advance in the
fields of research can be of great benefit. Indeed, I am thankful to the mathematician Franco
Brezzi for our research collaboration in this spirit, and for his valuable suggestions regard-
ing this book.

I consider it one of the greatest achievements for an educator to write a valuable book.
In these times, all fields of engineering are rapidly changing, and new books for students are
needed in practically all areas of engineering. I am therefore grateful that the Mechanical
Engineering Department of M.I.T. has provided me with an excellent environment in which
to pursue my interests in teaching, research, and scholarly writing. While it required an
immense effort on my part to write this book, I wanted to accomplish this task as a
commitment to my past and future students, to any educators and researchers who might
have an interest in the work, and, of course, to improve upon my teaching at M.I.T.

I have been truly fortunate to work with many outstanding students at M.I.T., for
which I am very thankful. It has been a great privilege to be their teacher and work with
them. Of much value has also been that I have been intimately involved, at my company
ADINA R & D, Inc., in the development of finite element methods for industry. This
involvement has been very beneficial in my teaching and research, and in my writing of this
book.

A text of significant depth and breadth on a subject that came to life only a few decades
ago and that has experienced tremendous advances, can be written only by an author who
has had the benefit of interacting with many people in the field. I would like to thank all my
students and friends who contributed—and will continue to contribute—to my knowledge
and understanding of finite element methods. My interaction with them has given me great
joy and satisfaction.

I also would like to thank my secretary, Kristan Raymond, for her special efforts in
typing the manuscript of this text.

Finally, truly unbounded thanks are due to my wife, Zorka, and children, Ingrid and
Mark, who, with their love and their understanding of my efforts, supported me in writing
this book.

K. J. Bathe
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Il CHAPTER ONE I

An Introduction
to the Use of Finite
Element Procedures

1.1 INTRODUCTION

Finite element procedures are at present very widely used in engineering analysis, and we
can expect this use to increase significantly in the years to come. The procedures are
employed extensively in the analysis of solids and structures and of heat transfer and fluids,
and indeed, finite element methods are useful in virtually every field of engineering analysis.

The development of finite element methods for the solution of practical engineering
problems began with the advent of the digital computer. That is, the essence of a finite
element solution of an engineering problem is that a set of governing algebraic equations is
established and solved, and it was only through the use of the digital computer that this
process could be rendered effective and given general applicability. These two properties—
effectiveness and general applicability in engineering analysis—are inherent in the theory
used and have been developed to a high degree for practical computations, so that finite
element methods have found wide appeal in engineering practice.

As is often the case with original developments, it is rather difficult to quote an exact
“date of invention,” but the roots of the finite element method can be traced back to three
separate research groups: applied mathematicians—see R. Courant [A]; physicists—see
J. L. Synge [A]; and engineers—see J. H. Argyris and S. Kelsey [A]. Although in principle
published already, the finite element method obtained its real impetus from the develop-
ments of engineers. The original contributions appeared in the papers by J. H. Argyris and
S. Kelsey [A]; M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp [A]; and R. W.
Clough [A]. The name “finite element” was coined in the paper by R. W. Clough [A].
Important early contributions were those of J. H. Argyris [A] and O. C. Zienkiewicz and
Y. K. Cheung [A]. Since the early 1960s, a large amount of research has been devoted to
the technique, and a very large number of publications on the finite element method is

1



2 An Introduction to the Use of Finite Element Procedures Chap. 1

available (see, for example, the compilation of references by A. K. Noor [A] and the Finite
Element Handbook edited by H. Kardestuncer and D. H. Norrie [AD.

The finite element method in engineering was initially developed on a physical basis
for the analysis of problems in structural mechanics. However, it was soon recognized that
the technique could be applied equally well to the solution of many other classes of
problems. The objective of this book is to present finite element procedures comprehen-
sively and in a broad context for solids and structures, field problems (specifically heat
transfer), and fluid flows.

To introduce the topics of this book we consider three important items in the following
sections of this chapter. First, we discuss the important point that in any analysis we always
select a mathematical model of a physical problem, and then we solve that model. The finite
element method is employed to solve very complex mathematical models, but it is important
to realize that the finite element solution can never give more information than that
contained in the mathematical model.

Then we discuss the importance of finite element analysis in the complete process of
computer-aided design (CAD). This is where finite element analysis procedures have their
greatest utility and where an engineer is most likely to encounter the use of finite element
methods.

In the last section of this chapter we address the question of how to study finite element
methods. Since a voluminous amount of information has been published on these tech-
niques, it can be rather difficult for an engineer to identify and concentrate on the most
important principles and procedures. Our aim in this section is to give the reader some
guidance in studying finite element analysis procedures and of course also in studying the
various topics discussed in this book.

1.2 PHYSICAL PROBLEMS, MATHEMATICAL MODELS,
AND THE FINITE ELEMENT SOLUTION

The finite element method is used to solve physical problems in engineering analysis and
design. Figure 1.1 summarizes the process of finite element analysis. The physical problem
typically involves an actual structure or structural component subjected to certain loads.
The idealization of the physical problem to a mathematical model requires certain assump-
tions that together lead to differential equations governing the mathematical model (see
Chapter 3). The finite element analysis solves this mathematical model. Since the finite
element solution technique is a numerical procedure, it is necessary to assess the solution
accuracy. If the accuracy criteria are not met, the numerical (i.e., finite element) solution
has to be repeated with refined solution parameters (such as finer meshes) until a sufficient
accuracy is reached.

It is clear that the finite element solution will solve only the selected mathematical
model and that all assumptions in this model will be reflected in the predicted response. We
cannot expect any more information in the prediction of physical phenomena than the
information contained in the mathematical model. Hence the choice of an appropriate
mathematical model is crucial and completely determines the insight into the actual physical
problem that we can obtain by the analysis.
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Figure 1.1 The process of finite element analysis

Let us emphasize that, by our analysis, we can of course only obtain insight into the
physical problem considered: we cannot predict the response of the physical problem
exactly because it is impossible to reproduce even in the most refined mathematical model
all the information that is present in nature and therefore contained in the physical problem.

Once a mathematical model has been solved accurately and the results have been
interpreted, we may well decide to consider next a refined mathematical model in order to
increase our insight into the response of the physical problem. Furthermore, a change in the
physical problem may be necessary, and this in turn will also lead to additional mathemat-
ical models and finite element solutions (see Fig. 1.1).

The key step in engineering analysis is therefore choosing appropriate mathematical
models. These models will clearly be selected depending on what phenomena are to be



