


Agent-Based
Software Development

Michael Luck
Ronald Ashri
Mark d’Inverno

E200404494

Ag

Artech House
Boston ® London
www.artechhouse.com



Library of Congress Cataloging-in-Publication Data

A caralog record for this book is available from the Library of Congress.

British Library Cataloguing in Publication Data

A catalog record of this book is available from the British Library.

Cover design by Yekaterina Ratner

© 2004 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any infor-
mation storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this
book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannor at-
test to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

International Standard Book Number: 1-58053-605-0

10987654321



Agent-Based
Software Development



Agent-Oriented Systems
Series Editor: Michael Luck (University of Southampton, United Kingdom)

Overview:

Agent technology has seen a dramatic growth of interest in recent years and is being given added impetus by the in-
tegration of new technologies and applications into the mainstream of commercial software. For example, the World
Wide Web, e-commerce, Grid computing, and distributed object technologies all suggest that agent technology has
an important role in modern computing. This is now also true at the level of commercial and industrial take-up of
the technology, with an increasing number of companies investing in agent products and agent development solu-
tions and a number of standards initiatives underway for some time.

The Agent-Oriented Systems Series aims to cover important advances in agent-based computing concerning de-
velopment methodologies, tools and techniques, standards, and other aspects of agent-oriented systems develop-
ment. This series will be of interest to all software engineers, IT personnel, computer scientists, and technologists
working in the area of agent-based computing and in related application domains as well as related areas of distrib-
uted computing, semantic Web, Grid computing, and so forth. It should also provide a valuable set of resources ad-
dressing the state of the art in agent-oriented systems development. The series topics include, but are not limited to:

« Agent-oriented software engineering;
» Agent standards;

« Development case studies;

» Infrastructure for agent-based systems;
» Agent platforms and tools;

« Agent-oriented information systems.

For a listing of recent titles in the Artech House Computing Library,
turn to the back of this book.



Preface

The field of agent-based computing is large and growing, and set to underpin much of the infra-
structure of the next generation of computing that seeks to address issues in ambient intelligence,
pervasive and ubiquitous computing, Grid computing, the semantic Web, e-business and many other
areas. However, in order to take full advantage of the benefits that agent technology brings, the
agent paradigm ought to be adopted at the stage of system design. This suggests the use of agent-
oriented methodologies for the development of agent systems, adherence to standards intended to
ensure interoperability, and the adoption of relevant tools and techniques to aid the process. This
book provides a thorough exploration of all these areas, and brings together the different aspects of
agent-oriented development in one coherent text.

OVERVIEW OF THE BOOK

Chapter 1 starts by discussing the key concepts underlying agent systems, and reviewing the mo-
tivation for their development through a consideration of the underlying computational context. In
Chapter 2, these basic notions of agents are fleshed out through a review of several important agent
architectures and key multiagent systems. The aim of this chapter is simply to provide an adequate
grounding for the issues that are covered in the subsequent chapters on more specific development-
oriented work. It can be taken simply as a necessary preliminary chapter, or as a broad review of the
field in its own right.

The main part of the book begins in Chapter 3 with a description of a selection of tools that
are available for use in agent systems development. These include commercial systems as well as
more academic offerings, with each compared to the others along major axes. Complementing this,
Chapter 4 presents a detailed analysis of the various different methodologies and notations that have
been developed for the design of agent-based systems. It provides a review of the salient techniques,
many of which are now mature, and some in regular use.

Chapter 5 addresses the context for the development of agent systems through the use of
standards. It describes the work that has been done in the IT community to support interoperability,
primarily through the efforts of the Foundation for Intelligent Physical Agents (FIPA), but also
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other standards organizations. Arguably, the development of such standards must occur before the
widespread adoption of agent technologies. Chapter 6 similarly considers the context, but through
the availability of standard technologies that can be used to provide much of the functionality that
underlies systems of autonomous interacting agents. Technologies such as Jini and Web services all
offer valuable aspects that can be leveraged in developing agent systems.

Finally, Chapter 7 ends the book by reviewing the different resources that are available for con-
sultation for more detail on the various aspects of agent-oriented development, and on agent technolo-
gies more generally. In a fast-moving field, Web resources and other sources of information and sup-
port can be critically important. Fortunately, there are many possible places to seek further informa-
tion. One of these is the Web site that accompanies this book, at www . agentdevelopment . com,
which contains pointers to numerous reference sites, and a range of relevant resources.
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Chapter 1

Agent-Based Computing
1.1 OPEN AND DYNAMIC COMPUTING ENVIRONMENTS

Computer systems in the twenty-first century are dramatically different from those that have been
the norm over the last 50 years. Unlike previous changes, which have seen vast improvements in
computing capacity and power, modern computing is essentially defined by the interconnection of
computers, and all that it brings. The advent of the World Wide Web 10 years ago offered a radically
new take on the information society, releasing information and making it available to all. Somewhat
more crucially, it also provided the basic infrastructure for the dynamic provision of on-line services,
which are only now beginning to take root with real substance and significance.

Against this technological background, 2003 was also the year in which Internet penetration
in Western Europe and the United States was expected to pass 60%. In Europe, the European
Commission has launched its eEurope initiative, which aims to bring every citizen, home, school, and
business online to create a digitally literate Europe. In short, the maturity of the technology, and its
penetration of all aspects of society, have converged to suggest not just new kinds of systems, but also
their implementation and deployment on a scale that offers dramatic new opportunities and problems.
This book is concerned with one way—and one that is being seen by many as a key underpinning
technology for the next generation of computing—of meeting these opportunities and addressing these
problems.

As indicated above, the move from a focus on the individual standalone computer system to
a situation in which the real power of computers is realized through distributed, open, and dynamic
systems has radically changed the nature of software and its development. The key difference now
is that there is an environment made up of computers in the infrastructure, in support systems,
and embedded in a vast array of devices, as well as on the traditional desktop. More importantly,
these computers are typically networked and can interact dynamically to form new configurations
of systems to suit current needs. The flexibility that such abilities offer, although increasingly taken
for granted, is set to change the way we do business, undertake science, and manage our everyday
activities. However, the characteristics of dynamic and open environments in which, for example,
heterogeneous systems must interact, span organizational boundaries, and operate effectively within
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rapidly changing circumstances and with dramatically increasing quantities of available information,
suggest that improvements on the traditional computing models and paradigms are required.

In particular, the need for some degree of autonomy, to enable components to respond dynam-
ically to changing circumstances while trying to achieve overarching objectives without the need for
user intervention, is seen by many as fundamental. In practical developments, Web services, for exam-
ple, now offer fundamentally new ways of operating through a set of standardized tools, and support a
service-oriented view of distinct and independent software components interacting to provide valuable
functionality. In the context of such developments, agent technologies have become some of the most
valuable tools that can be used to tackle the emergent problems, and to manage the complexity that
arises.

Agents can be viewed as autonomous, problem-solving computational entities capable of
effective operation in dynamic and open environments. They are often deployed in environments in
which they interact, and possibly cooperate, with other agents (including both people and software)
that may have conflicting aims. These are exactly the kinds of characteristics that are needed in the new
computational environments. Agent-based systems have emerged over the past 10 to 15 years, from
a convergence of technologies in distributed object systems and distributed artificial intelligence, and
have seen rapid and dramatic growth both academically and commercially. Indeed, agent technologies
are already providing real benefits in a diverse range of business and industry domains, spanning
manufacturing, supply chain management, and B2B exchanges, for example.

1.2 OBJECT TECHNOLOGIES

The relation of agents to objects has caused difficulty for some in understanding what it is that makes
agents distinct. While object-orientation as a programming paradigm has achieved much success, and
offers a valuable abstraction for the development of complex systems, agents provide a different and
higher level of abstraction. Like objects that provide encapsulation of state and behavior, agents also
encapsulate these properties. However, objects are essentially passive in nature—they have no choice
as to whether or not they interact, and are simply invoked by other objects to perform particular
tasks or execute particular functionality. By contrast, agents have the ability to decide for themselves
whether to participate in computational activity, and whether to perform the desired operation. This
is the fundamental distinction that marks out agents as distinct by virtue of their autonomy. It is this
autonomy that is also responsible for providing the flexibility that is needed for open and dynamic
environments. If behavior is predetermined and is guaranteed when invoked, then the ability to provide
flexible responses in the light of changing circumstances is severely curtailed, if not ruled out entirely.

In terms of modeling, objects can be regarded as a valuable way to view the world. Yet an agent-
based approach offers a much more natural representation of real-world systems in which different
individuals interact according to their own agenda and priorities. They then can come together to
achieve overarching objectives that might not, or not as easily, be achieved by the individuals alone,
but they do so when it is appropriate. When the goals of individual agents are closely aligned, and
if they are completely benevolent and honest (or veracious) so that they always respond to requests
made of them, and always provide information when queried, then the resulting systems may come
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close to resembling an object-oriented system. In these cases, the object-oriented paradigm may be
adequate, but this is a particular configuration of agents that is unlikely to provide the flexibility that
may be required in modern computing environments.

In short, agents can be distinguished from objects in that they are autonomous entities capable
of exercising choice over their actions and interactions. Agents cannot, therefore, be directly invoked
like objects. However, they may be constructed using object technology. Moreover, agents typically
run in their own thread of control, as opposed to standard object systems, which have one thread.

Object orientation is also relevant when considering how to develop agent systems. The question
of where agent development methodologies fit in, and the extent to which they are needed in
addition to existing object-oriented methodologies, depends on the approach taken. If agents provide a
programming paradigm to rival object-oriented programming, then methodology is clearly of central
importance, since the program and the programming themselves are informed by the agent paradigm.
If, instead, they provide a paradigm or metaphor for design, then methodology is certainly important,
but the nature of that methodology is likely to be related to current object-oriented approaches.
In this case, however, the agent approach will require significant modifications from a standard
object-oriented approach to address the agent abstractions and interactions. In either case, however,
methodology is a vital issue that must be considered in some detail in order to support agent-
orientation. In particular, the object-oriented paradigm does not address issues of developing software
that exhibits flexible autonomous behavior.

There has recently been a good degree of work aimed at addressing these concerns, which are
the focus of Chapter 4, but more work remains to be done before the approach is accepted as part
of the mainstream. Indeed, as the field matures, the broader acceptance of agent-oriented systems
will become increasingly tied to the availability and accessibility of well-founded techniques and
methodologies for system development.

1.3 BASIC NOTIONS OF AGENTS

The introduction of the notion of agents is partly due to the difficulties that have arisen when
attempting to solve problems without regard to a real external environment or to the entity involved
in that problem-solving process. Thus, though the solutions constructed to address these problems are
in themselves important, they can be limited and inflexible in not coping well in real-world situations.
In response, agents have been proposed as situated and embodied problem-solvers that are capable
of flexible and effective operation in complex environments. This means that the agent receives input
from its environment through some sensory device, and acts so as to affect that environment in some
way through effectors. Such a simple but powerful concept has been adopted by many branches of
computing because of its usefulness and broad applicability.

However, a recurrent theme that is raised in one form or another in many different contexts is
the lack of consensus over what it is that actually constitutes an agent. Certainly, the immediately
engaging concepts and images that spring to mind when the term is mentioned are a prime reason for
the popularization of agent systems in the broader (and even public) community, and for the extremely
rapid growth and development of the field. Indeed the elasticity in terminology and definition of agent
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concepts has led to the adoption of common terms for a broad range of research activity, providing an
inclusive and encompassing set of interacting and cross-fertilizing subfields. This is partly responsible
for the richness of the area and for the variety of approaches and applications.

Despite some healthy debate over precise definitions of agenthood, it is clear that there is now
a generally accepted understanding of agents as computational entities that are capable of exhibiting
flexible behavior in dynamic and unpredictable environments. This understanding is important, and
it provides an operational basis for what this book is about, and motivates the effort directed towards
the development of agent technologies and agent-based systems. In more specific terms, however,
we can drill down and identify two distinct views of agents. The weak notion of agents provides a
characterization that enumerates four properties regarded as necessary and sufficient for agenthood:

e Autonomy: agents must be self-starting and independent entities that are able to function
without direct programmer or user intervention.

e Reactiveness: agents can monitor their environments and respond quickly and effectively to
changes in those environments.

o Proactiveness: agents have overarching goals that direct behavior over longer periods of time
towards achieving complex tasks.

e Social ability: since agents operate in dynamic and open environments with many other agents,
they must have the ability to interact and communicate with these others.

Since this characterization of agents was originally provided in 1994 [1], it has been the subject
of much discussion, and several authors have provided alternative characterizations with additional
properties. These include, for example, the ability to learn, mobility, the requirement that agents are
benevolent or honest (an unlikely requirement in open environments), that they are rational, and many
others.

The strong or intentional notion of agents also requires agents to be based around control
architectures comprising mental components such as beliefs, desires, and motivations. While the
stance adopted throughout this book is broad and open, and avoids the dogma that can creep into
these kinds of discussions, it will be seen very clearly, especially in the initial discussion of agent
architectures, that these notions can be important and valuable as a metaphor that leads to the provision
of effective and flexible control and behavior.

The broad area of understanding agenthood has merited several efforts that explore the area in
some depth, including encompassing agent frameworks [2, 3] and agent taxonomies [4], which go
some way to identifying the key features of agent systems and the characteristics of the different
branches of the field. In attempting to distinguish agents from programs, Franklin and Graesser
constructed an agent taxonomy [4] aimed at identifying the key features of agent systems in relation
to different branches of the field. Their aim, amply described by the title of the paper, “Is It an Agent
or Just a Program?”, highlights the problem of whether there is value in the notion of agents. The
definition provided, that an “autonomous agent is a system situated within and a part of an environment
that senses that environment and acts on it, over time, in pursuit of its own agenda and so as to affect
what it senses in the future,” serves to distinguish some nonagent programs from agents through the



