

Agent-Based
Software Development

Michael Luck
Ronald Ashri
Mark d’Inverno

E200404494

Ag

Artech House
Boston ® London
www.artechhouse.com

Library of Congress Cataloging-in-Publication Data

A caralog record for this book is available from the Library of Congress.

British Library Cataloguing in Publication Data

A catalog record of this book is available from the British Library.

Cover design by Yekaterina Ratner

© 2004 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any infor-
mation storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this
book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannor at-
test to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

International Standard Book Number: 1-58053-605-0

10987654321

Agent-Based
Software Development

Agent-Oriented Systems
Series Editor: Michael Luck (University of Southampton, United Kingdom)

Overview:

Agent technology has seen a dramatic growth of interest in recent years and is being given added impetus by the in-
tegration of new technologies and applications into the mainstream of commercial software. For example, the World
Wide Web, e-commerce, Grid computing, and distributed object technologies all suggest that agent technology has
an important role in modern computing. This is now also true at the level of commercial and industrial take-up of
the technology, with an increasing number of companies investing in agent products and agent development solu-
tions and a number of standards initiatives underway for some time.

The Agent-Oriented Systems Series aims to cover important advances in agent-based computing concerning de-
velopment methodologies, tools and techniques, standards, and other aspects of agent-oriented systems develop-
ment. This series will be of interest to all software engineers, IT personnel, computer scientists, and technologists
working in the area of agent-based computing and in related application domains as well as related areas of distrib-
uted computing, semantic Web, Grid computing, and so forth. It should also provide a valuable set of resources ad-
dressing the state of the art in agent-oriented systems development. The series topics include, but are not limited to:

« Agent-oriented software engineering;
» Agent standards;

« Development case studies;

» Infrastructure for agent-based systems;
» Agent platforms and tools;

« Agent-oriented information systems.

For a listing of recent titles in the Artech House Computing Library,
turn to the back of this book.

Preface

The field of agent-based computing is large and growing, and set to underpin much of the infra-
structure of the next generation of computing that seeks to address issues in ambient intelligence,
pervasive and ubiquitous computing, Grid computing, the semantic Web, e-business and many other
areas. However, in order to take full advantage of the benefits that agent technology brings, the
agent paradigm ought to be adopted at the stage of system design. This suggests the use of agent-
oriented methodologies for the development of agent systems, adherence to standards intended to
ensure interoperability, and the adoption of relevant tools and techniques to aid the process. This
book provides a thorough exploration of all these areas, and brings together the different aspects of
agent-oriented development in one coherent text.

OVERVIEW OF THE BOOK

Chapter 1 starts by discussing the key concepts underlying agent systems, and reviewing the mo-
tivation for their development through a consideration of the underlying computational context. In
Chapter 2, these basic notions of agents are fleshed out through a review of several important agent
architectures and key multiagent systems. The aim of this chapter is simply to provide an adequate
grounding for the issues that are covered in the subsequent chapters on more specific development-
oriented work. It can be taken simply as a necessary preliminary chapter, or as a broad review of the
field in its own right.

The main part of the book begins in Chapter 3 with a description of a selection of tools that
are available for use in agent systems development. These include commercial systems as well as
more academic offerings, with each compared to the others along major axes. Complementing this,
Chapter 4 presents a detailed analysis of the various different methodologies and notations that have
been developed for the design of agent-based systems. It provides a review of the salient techniques,
many of which are now mature, and some in regular use.

Chapter 5 addresses the context for the development of agent systems through the use of
standards. It describes the work that has been done in the IT community to support interoperability,
primarily through the efforts of the Foundation for Intelligent Physical Agents (FIPA), but also

X1

Xii Agent-Based Software Development

other standards organizations. Arguably, the development of such standards must occur before the
widespread adoption of agent technologies. Chapter 6 similarly considers the context, but through
the availability of standard technologies that can be used to provide much of the functionality that
underlies systems of autonomous interacting agents. Technologies such as Jini and Web services all
offer valuable aspects that can be leveraged in developing agent systems.

Finally, Chapter 7 ends the book by reviewing the different resources that are available for con-
sultation for more detail on the various aspects of agent-oriented development, and on agent technolo-
gies more generally. In a fast-moving field, Web resources and other sources of information and sup-
port can be critically important. Fortunately, there are many possible places to seek further informa-
tion. One of these is the Web site that accompanies this book, at www . agentdevelopment . com,
which contains pointers to numerous reference sites, and a range of relevant resources.

ACKNOWLEDGMENTS

This book resulted from discussions with Tim Pitts of Artech House, in the context of the emerging
maturity of the field of agent-oriented software development. Tim has provided support and encour-
agement, and we appreciate his efforts in pushing the project forward. Similarly, the day-to-day work
of badgering the authors and dealing with our delays and problems was handled by Louise Skelding
and Tiina Ruonamaa, who coped with us admirably during the development of the manuscript. We
are grateful to them both for their patience.

Most of the work in producing this book has been undertaken by the three authors, but the book
itself would not offer anything like the coverage and depth of analysis had the authors of Chapter 4
and Chapter 5 not agreed to contribute.

A special mention must be made of Serena Raffin, who gave up her own time to help generate
many of the diagrams included in the chapters of this book. Without her, we would never have made
1t.

As is often the case, the environments in which we work provide excellent contexts in which
to undertake an endeavor like the one here. We appreciate and recognize that our departments and
universities not only enabled us to write this book, they also provided the experience of research and
development that we describe throughout. Particular thanks should go to Paul Howells, Nick J ennings,
Luc Moreau, Terry Payne, Mark Priestly, and Steve Winter, who provided support from within our own
institutions. Thanks also to Florence and Musa for making the days working in London much more
pleasant than they would otherwise have been.

Personally and individually, we must thank those around us for bearing with us during the stress
and tension of writing late and early, when we should have been spending our time with them. And for
those who didn’t bear with us, we love you anyway. Special thanks to our parents, Harry and Dalia,
Andreas and Photini, and Ray and Pauline.

Thanks also to Katia, Carla and Titta (and Lilly), Nikolas and Panikos, Daniel, Christos “Kozias”
Markides, Alex and Olivia, Abha, Jo and Leo, Jeremy and Monica (and Francesca and Martina),
Dan and Franky (and Poppy and Joseph), Alex, Rachel, Sharon and Ben (and Daniel, Jonathan, and
Francesca), Orly, Dawn, Lucy, Olivia, John and Philly (and Cameron), Eileen, Susan, Nicky, Serena,

Preface Xiii

Liz, Jane, Clare, Lucia, Mary, Carla, Michelle, Dolly and Candy (and Tiger and Hector), Eli, Phil
and Geddy (and Michael and Daisy), Paul Rooney, Gi and Philly (and Beany, Tatti, Oscar, Flo, and
Rose), Andy and Mel (and Thomas and Max), Neil and Susi (and Alex and Olly), Tim and Lisa (and
Joseph), Dave and Jo (and Saskia), Karen and Jason (and Tali), Val and Bill, Vijay and Lisa, Chris
and Catherine (and Eliza), Emma Barrett, Ali and Dave, Chris and Secha, Nicki and Tony, Nicki and
Giles, Chris and Sylvia, Tony and Leslie, Polly and Antonia, Eli, Lisa Rigg, Mike Freeman, Mike
Bacon, Jenny Goodwin, Kellie Samuda, Mo City, Hutch, Gib, Lawso, Dicks and the Lab Bar in Soho,
the Guinea Grill, the weekenders cricket club, and Choral Clench, all of whom have distracted us so
easily.

Michael Luck, Ronald Ashri,
and Mark d’Inverno
Southampton and London
January 2004

Contents

Preface

Chapter 1 Agent-Based Computing

Chapter 2

1.1 Open and Dynamic Computing Environments
1.2 Object Technologies
1.3 Basic Notions of Agents
1.4 Agent Properties
1.5 History of Agents
1.6 Application Opportunities
1.6.1 Ambient Intelligence
1.6.2 Grid Computing
1.6.3 Electronic Business
1.6.4 Simulation
1.7 Book Overview
References
Agent Architectures
2.1 Introduction
2.2 Reactive Agent Architectures
2.2.1 Subsumption Architecture
2.2.2 Agent Network Architecture
2.3 Deliberative Agent Architectures
2.3.1 BDI Architecture
2.3.2 Procedural Reasoning System
2.3.3 AgentSpeak(L)
234 IRMA
2.4 Hybrid Agent Architectures

2.4.1 TouringMachines
2.4.2 INTERRRAP

>
5.

— O 0O V001NN WN -

= e e el ek ek et —
O 00 00 ~J Wb ph WW

NN N NN
N W W N =

vi

Chapter 3

25

2.6

2.7

243

Agent-Based Software Development

Other Hybrid Architectures

Distributed Agent Architectures

251
2.5.2

2.5.3 Other Approaches to Macrolevel Organization

Contract Net Protocol
Agentis

Other Approaches

2.6.1
2.6.2

AGENTO and PLACA
Concurrent METATEM

Discussion
References

Agent Toolkits
Introduction
3.2 Review Method

3.1

33

34

35

3.6

3.7

3.2.1
322
ZEUS
3.3.1
332
333
334
335

Selection Criteria
Generic Toolkit Framework

Background

Agents

Multiagent Systems
Agent-Building Software
Management Services

RETSINA

34.1
342
343
344
345

Background

Agents

Multiagent Systems
Agent-Building Software
Management Services

IMPACT

3.5.1
352
353
354
355

Background

Agents

Multiagent Systems
Agent-Building Software
Management Software

JADE/LEAP

3.6.1
3.6.2
3.6.3
3.64
3.6.5
JACK
371

Background

Agents

Multiagent Systems
Agent-Building Software
Management Services

Background

27
28
28
30
31
32
32
33
35
36

39
39
40
40
41
42
42
43
44
45
46
46
46
47
48
49
50
50
50
51
53
54
54
54
54
55
56
57
57
58
58

Chapter 4

3.8

39
3.10

3.11

Contents

3.7.2 Agents

3.7.3 Multiagent Systems
3.7.4 Agent-Building Software
3.7.5 Management Services

Living Markets
3.8.1 Background
3.8.2 Agents

3.8.3 Multiagent Systems
3.8.4 Agent-Building Software
3.8.5 Management Software
Other Toolkits

Discussion

3.10.1 Agents

3.10.2 Multiagent Systems
3.10.3 Agent-Building Software
3.10.4 Management Services
Conclusions

References

Methodologies and Modeling Languages

4.1
42
4.3
4.4

4.5

4.6

4.7

Introduction

A Classification of Existing Methodologies and Notations
Knowledge Engineering Approaches

Agent-Oriented Approaches

4.4.1 Gaia and Its Extension ROADMAP

442 SODA

443 Comparison

Methodological Extensions to Object-Oriented Approaches
4.5.1 Agent Modeling Techniques for Systems of BDI Agents
452 MESSAGE

4.5.3 Tropos
4.5.4 Prometheus
4.5.5 MaSE
45.6 PASSI

4.5.77 Comparison

Modeling Notations Based on UML: Agent UML
4.6.1 Interaction Protocols

4.6.2 Social Structures

4.6.3 Agent Classes

4.6.4 Representing Ontologies by Using UML
4.6.5 UML Representation for Goals and Plans
Miscellaneous Approaches

vii

58
59
60
60
60
60
61
62
63
63
63
66
66
69
71
71
72
72

71
77
79
80
85
85
90
94
94
95
98
101
104
107
109
110
111
112
114
116
119
121
123

viii

Chapter 5

Chapter 6

4.8

Agent-Based Software Development

Summary and Concluding Remarks
4.8.1 Analysis

4.8.2 Design

4.8.3 Conclusions
Acknowledgments

References

Standards for Agent Development

5.1
5.2

5.3
54

5.5

5.6

5.7

5.8

5.9

5.10

Introduction

Foundation for Intelligent Physical Agents Standards
5.2.1 FIPA Abstract Architecture

5.2.2 FIPA Agent Management

5.2.3 FIPA Agent Message Transport Service
5.2.4 FIPA Agent Communication Standards

5.2.5 Applications

5.2.6 Java Agent Services (JAS)

5.2.7 Other FIPA Specifications

5.2.8 FIPA Standards Index

KQML

Mobile Agent Standards

54.1 OMG MASIF

5.4.2 FIPA Agent Mobility Standard
Agent-Enabling Standards

5.5.1 KIF

5.5.2 The Semantic Web and Ontology Frameworks
Web Services

5.6.1 DAML-S

Grid Computing and the Open Grid Services Architecture
5.7.1 Other Related Standards

Implementations and Toolkits

5.8.1 FIPA Implementations

5.8.2 Mobile Agent Platforms

5.8.3 Other Useful Tools

Uses of Agent Standards

59.1 DARPA CoABS Grid

5.9.2 Agentcities

5.9.3 Towards Commercial Uses of the FIPA Standards
Conclusions

References

Agent Support Technologies

6.1

Introduction

124
125
126
126
127
127

133
133
134
135
136
138
139
141
141
142
142
144
145
146
146
148
148
149
153
155
156
157
158
158
159
159
163
163
163
164
164
165

167
167

Chapter 7

6.2

6.3
6.4
6.5

6.6

Contents

Multitier Application Model

6.2.1 Java 2 Enterprise Edition

6.2.2 Windows Server System and the .NET Framework
JIXTA

JINI

Web Services

6.5.1 Message Exchange

6.5.2 Service Description

6.5.3 Service Discovery

6.5.4 Service Orchestration

6.5.5 Use of Web Services in Agent Systems
Conclusions

References

Agent-Based Development Resources

7.1
7.2

7.3
7.4

7.5

7.6

7.7

Introduction

Mailing Lists

7.2.1 DAI-List

7.2.2 AgentLink E-Mail Update
7.2.3 Software Agents List
Events

Further References

7.4.1 Texts

7.4.2 Agent-Based Software Engineering Collections
7.4.3 Journals and Magazines
Web Resources

7.5.1 UMBC Agent Web

7.5.2 MultiAgent.com

7.5.3 Agents Portal

7.54 KTweb

7.5.5 SemanticWeb.org

7.5.6 AgentLink

Organizations

7.6.1 IFMAS

7.6.2 FIPA

7.6.3 AgentLink

Agent-Based Software Development

About the Authors

Index

ix

168
171
173
174
176
179
180
180
181
182
183
184
184

187
187
187
187
187
188
188
190
190
191
192
192
192
193
193
193
193
194
194
194
195
195
196

197

199

Chapter 1

Agent-Based Computing
1.1 OPEN AND DYNAMIC COMPUTING ENVIRONMENTS

Computer systems in the twenty-first century are dramatically different from those that have been
the norm over the last 50 years. Unlike previous changes, which have seen vast improvements in
computing capacity and power, modern computing is essentially defined by the interconnection of
computers, and all that it brings. The advent of the World Wide Web 10 years ago offered a radically
new take on the information society, releasing information and making it available to all. Somewhat
more crucially, it also provided the basic infrastructure for the dynamic provision of on-line services,
which are only now beginning to take root with real substance and significance.

Against this technological background, 2003 was also the year in which Internet penetration
in Western Europe and the United States was expected to pass 60%. In Europe, the European
Commission has launched its eEurope initiative, which aims to bring every citizen, home, school, and
business online to create a digitally literate Europe. In short, the maturity of the technology, and its
penetration of all aspects of society, have converged to suggest not just new kinds of systems, but also
their implementation and deployment on a scale that offers dramatic new opportunities and problems.
This book is concerned with one way—and one that is being seen by many as a key underpinning
technology for the next generation of computing—of meeting these opportunities and addressing these
problems.

As indicated above, the move from a focus on the individual standalone computer system to
a situation in which the real power of computers is realized through distributed, open, and dynamic
systems has radically changed the nature of software and its development. The key difference now
is that there is an environment made up of computers in the infrastructure, in support systems,
and embedded in a vast array of devices, as well as on the traditional desktop. More importantly,
these computers are typically networked and can interact dynamically to form new configurations
of systems to suit current needs. The flexibility that such abilities offer, although increasingly taken
for granted, is set to change the way we do business, undertake science, and manage our everyday
activities. However, the characteristics of dynamic and open environments in which, for example,
heterogeneous systems must interact, span organizational boundaries, and operate effectively within

1

2 Agent-Based Software Development

rapidly changing circumstances and with dramatically increasing quantities of available information,
suggest that improvements on the traditional computing models and paradigms are required.

In particular, the need for some degree of autonomy, to enable components to respond dynam-
ically to changing circumstances while trying to achieve overarching objectives without the need for
user intervention, is seen by many as fundamental. In practical developments, Web services, for exam-
ple, now offer fundamentally new ways of operating through a set of standardized tools, and support a
service-oriented view of distinct and independent software components interacting to provide valuable
functionality. In the context of such developments, agent technologies have become some of the most
valuable tools that can be used to tackle the emergent problems, and to manage the complexity that
arises.

Agents can be viewed as autonomous, problem-solving computational entities capable of
effective operation in dynamic and open environments. They are often deployed in environments in
which they interact, and possibly cooperate, with other agents (including both people and software)
that may have conflicting aims. These are exactly the kinds of characteristics that are needed in the new
computational environments. Agent-based systems have emerged over the past 10 to 15 years, from
a convergence of technologies in distributed object systems and distributed artificial intelligence, and
have seen rapid and dramatic growth both academically and commercially. Indeed, agent technologies
are already providing real benefits in a diverse range of business and industry domains, spanning
manufacturing, supply chain management, and B2B exchanges, for example.

1.2 OBJECT TECHNOLOGIES

The relation of agents to objects has caused difficulty for some in understanding what it is that makes
agents distinct. While object-orientation as a programming paradigm has achieved much success, and
offers a valuable abstraction for the development of complex systems, agents provide a different and
higher level of abstraction. Like objects that provide encapsulation of state and behavior, agents also
encapsulate these properties. However, objects are essentially passive in nature—they have no choice
as to whether or not they interact, and are simply invoked by other objects to perform particular
tasks or execute particular functionality. By contrast, agents have the ability to decide for themselves
whether to participate in computational activity, and whether to perform the desired operation. This
is the fundamental distinction that marks out agents as distinct by virtue of their autonomy. It is this
autonomy that is also responsible for providing the flexibility that is needed for open and dynamic
environments. If behavior is predetermined and is guaranteed when invoked, then the ability to provide
flexible responses in the light of changing circumstances is severely curtailed, if not ruled out entirely.

In terms of modeling, objects can be regarded as a valuable way to view the world. Yet an agent-
based approach offers a much more natural representation of real-world systems in which different
individuals interact according to their own agenda and priorities. They then can come together to
achieve overarching objectives that might not, or not as easily, be achieved by the individuals alone,
but they do so when it is appropriate. When the goals of individual agents are closely aligned, and
if they are completely benevolent and honest (or veracious) so that they always respond to requests
made of them, and always provide information when queried, then the resulting systems may come

Agent-Based Computing 3

close to resembling an object-oriented system. In these cases, the object-oriented paradigm may be
adequate, but this is a particular configuration of agents that is unlikely to provide the flexibility that
may be required in modern computing environments.

In short, agents can be distinguished from objects in that they are autonomous entities capable
of exercising choice over their actions and interactions. Agents cannot, therefore, be directly invoked
like objects. However, they may be constructed using object technology. Moreover, agents typically
run in their own thread of control, as opposed to standard object systems, which have one thread.

Object orientation is also relevant when considering how to develop agent systems. The question
of where agent development methodologies fit in, and the extent to which they are needed in
addition to existing object-oriented methodologies, depends on the approach taken. If agents provide a
programming paradigm to rival object-oriented programming, then methodology is clearly of central
importance, since the program and the programming themselves are informed by the agent paradigm.
If, instead, they provide a paradigm or metaphor for design, then methodology is certainly important,
but the nature of that methodology is likely to be related to current object-oriented approaches.
In this case, however, the agent approach will require significant modifications from a standard
object-oriented approach to address the agent abstractions and interactions. In either case, however,
methodology is a vital issue that must be considered in some detail in order to support agent-
orientation. In particular, the object-oriented paradigm does not address issues of developing software
that exhibits flexible autonomous behavior.

There has recently been a good degree of work aimed at addressing these concerns, which are
the focus of Chapter 4, but more work remains to be done before the approach is accepted as part
of the mainstream. Indeed, as the field matures, the broader acceptance of agent-oriented systems
will become increasingly tied to the availability and accessibility of well-founded techniques and
methodologies for system development.

1.3 BASIC NOTIONS OF AGENTS

The introduction of the notion of agents is partly due to the difficulties that have arisen when
attempting to solve problems without regard to a real external environment or to the entity involved
in that problem-solving process. Thus, though the solutions constructed to address these problems are
in themselves important, they can be limited and inflexible in not coping well in real-world situations.
In response, agents have been proposed as situated and embodied problem-solvers that are capable
of flexible and effective operation in complex environments. This means that the agent receives input
from its environment through some sensory device, and acts so as to affect that environment in some
way through effectors. Such a simple but powerful concept has been adopted by many branches of
computing because of its usefulness and broad applicability.

However, a recurrent theme that is raised in one form or another in many different contexts is
the lack of consensus over what it is that actually constitutes an agent. Certainly, the immediately
engaging concepts and images that spring to mind when the term is mentioned are a prime reason for
the popularization of agent systems in the broader (and even public) community, and for the extremely
rapid growth and development of the field. Indeed the elasticity in terminology and definition of agent

4 Agent-Based Software Development

concepts has led to the adoption of common terms for a broad range of research activity, providing an
inclusive and encompassing set of interacting and cross-fertilizing subfields. This is partly responsible
for the richness of the area and for the variety of approaches and applications.

Despite some healthy debate over precise definitions of agenthood, it is clear that there is now
a generally accepted understanding of agents as computational entities that are capable of exhibiting
flexible behavior in dynamic and unpredictable environments. This understanding is important, and
it provides an operational basis for what this book is about, and motivates the effort directed towards
the development of agent technologies and agent-based systems. In more specific terms, however,
we can drill down and identify two distinct views of agents. The weak notion of agents provides a
characterization that enumerates four properties regarded as necessary and sufficient for agenthood:

e Autonomy: agents must be self-starting and independent entities that are able to function
without direct programmer or user intervention.

e Reactiveness: agents can monitor their environments and respond quickly and effectively to
changes in those environments.

o Proactiveness: agents have overarching goals that direct behavior over longer periods of time
towards achieving complex tasks.

e Social ability: since agents operate in dynamic and open environments with many other agents,
they must have the ability to interact and communicate with these others.

Since this characterization of agents was originally provided in 1994 [1], it has been the subject
of much discussion, and several authors have provided alternative characterizations with additional
properties. These include, for example, the ability to learn, mobility, the requirement that agents are
benevolent or honest (an unlikely requirement in open environments), that they are rational, and many
others.

The strong or intentional notion of agents also requires agents to be based around control
architectures comprising mental components such as beliefs, desires, and motivations. While the
stance adopted throughout this book is broad and open, and avoids the dogma that can creep into
these kinds of discussions, it will be seen very clearly, especially in the initial discussion of agent
architectures, that these notions can be important and valuable as a metaphor that leads to the provision
of effective and flexible control and behavior.

The broad area of understanding agenthood has merited several efforts that explore the area in
some depth, including encompassing agent frameworks [2, 3] and agent taxonomies [4], which go
some way to identifying the key features of agent systems and the characteristics of the different
branches of the field. In attempting to distinguish agents from programs, Franklin and Graesser
constructed an agent taxonomy [4] aimed at identifying the key features of agent systems in relation
to different branches of the field. Their aim, amply described by the title of the paper, “Is It an Agent
or Just a Program?”, highlights the problem of whether there is value in the notion of agents. The
definition provided, that an “autonomous agent is a system situated within and a part of an environment
that senses that environment and acts on it, over time, in pursuit of its own agenda and so as to affect
what it senses in the future,” serves to distinguish some nonagent programs from agents through the

