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Preface

Swarm intelligence is a modern artificial intelligence discipline that is con-
cerned with the design of multiagent systems with applications, e.g., in op-
timization and in robotics. The design paradigm for these systems is funda-
mentally different from more traditional approaches.

Instead of a sophisticated controller that governs the global behavior of
the system, the swarm intelligence principle is based on many unsophisticated
entities that cooperate in order to exhibit a desired behavior. Inspiration for
the design of these systems is taken from the collective behavior of social
insects such as ants, termites, bees, and wasps, as well as from the behavior of
other animal societies such as flocks of birds or schools of fish. Colonies of social
insects have mesmerized researchers for many years. However, the principles
that govern their behavior remained unknown for a long time. Even though
the single members of these societies are unsophisticated individuals, they are
able to achieve complex tasks in cooperation. Coordinated behavior emerges
from relatively simple actions or interactions between the individuals.

For example, ants, termites and wasps are able to build sophisticated nests
in cooperation, without any of the individuals having a global master plan of
how to proceed. Another example is the foraging behavior that ants or bees
exhibit when searching for food. While ants employ an indirect communication
strategy via chemical pheromone trails in order to find shortest paths between
their nest and food sources, bee colonies are very efficient in exploiting the
richest food sources based on scouts that communicate information about
new food sources by means of a so-called waggle dance. For more examples
and a more detailed description of the fascinating biological role models that
inspired swarm intelligence applications see Chaps. 1 and 2 of this book.

Scientists have applied these principles to new approaches, for example,
in optimization and the control of robots. Characterizing properties of the
resulting systems include robustness and flexibility. The field of research that
is concerned with collective behavior in self-organized and decentralized Sys-
tems is now referred to as swarm intelligence. The term swarm intelligence
was first used by Beni and colleagues in the context of cellular robotic Sys-
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tems where simple agents organize themselves through nearest neighbor inter-
actions. Meanwhile, the term swarm intelligence is used for a much broader
research field, as documented in the seminal book Swarm Intelligence—From
Natural to Artificial Systems by Dorigo, Theraulaz, and Bonabeau, published
by Oxford University Press. However, since the appearance of the above-
mentioned book in 1999, the literature on swarm intelligence topics has grown
significantly. This was the motivation for editing this book, whose intention
is to provide an overview of swarm intelligence to novices of the field, and
to provide researchers from the field with a collection of some of the most
interesting recent developments. In order to achieve this goal we were able
to convince some of the top researchers in their respective domains to write
chapters on their work.

Introductory chapters in the first part of the book are on biological
foundations of swarm intelligence, optimization, swarm robotics, and ap-
plications in new-generation telecommunication networks. Optimization and
swarm robotics are nowadays two of the domains where swarm intelligence
principles have been applied very successfully. A third and very popular ap-
plication domain concerns routing and loadbalancing in telecommunication
networks. The second part of the book contains chapters on more specific
topics of swarm intelligence research such as the evolution of robot behavior,
the use of particle swarms for dynamic optimization, organic computing, and
the decentralized traffic flow in production networks.

Finally, we hope that the readers enjoy reading this book, and, most impor-
tantly, that they learn something new by seeing things from a new perspective.

Barcelona, Odense Christian Blum
April 2008 Daniel Merkle
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Biological Foundations of Swarm Intelligence

Madeleine Beekman!, Gregory A. Sword?, and Stephen J. Simpson?

I Behaviour and Genetics of Social Insects Lab, School of Biological Sciences,
University of Sydney, Sydney, Australia
mbeekman@bio.usyd.edu.au

2 Behaviour and Physiology Research Group, School of Biological Sciences,
University of Sydney, Sydney, Australia
{greg.sword,stephen. simpson}@bio.usyd.edu.au

Summary. Why should a book on swarm intelligence start with a chapter on bi-
ology? Because swarm intelligence is biology. For millions of years many biological
systems have solved complex problems by sharing information with group members.
By carefully studying the underlying individual behaviours and combining behav-
ioral observations with mathematical or simulation modeling we are now able to
understand the underlying mechanisms of collective behavior in biological systems.
We use examples from the insect world to illustrate how patterns are formed, how
collective decisions are made and how groups comprised of large numbers of insects
are able to move as one. We hope that this first chapter will encourage and inspire
computer scientists to look more closely at biological systems.

1 Introduction

“He must be a dull man who can examine the exquisite structure of a comb
so beautifully adapted to its end, without enthusiastic admiration. 7
Charles Darwin (1872)

When the Egyptians first started to keep honeybees 5,000 years ago, they
surely must have marveled on the beauty of the bees’ comb. Not only is the
honeycomb beautiful to look at, but how did the bees decide to build hexago-
nal cells and not cells of another form? Initially it was suggested that hexag-
onal cells hold the most honey, but the French physicist R.A.F. de Réaumur
realized that it was not the content of the cells that counts, but the amount
of material, wax, that is needed to divide a given area into equal cells. Obvi-
ously at that time it was assumed that the bees were “blindly using the highest
mathematics by divine guidance and command” (Ball 1999). It was not until
Darwin that the need for divine guidance was removed and the hexagonal cells
were thought to be the result of natural selection. In this view the bees’ an-
cestors ‘experimented’ with different shaped cells, but the bees that by chance
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‘decided’ to build hexagonal cells did better and, as a result, the building of
hexagonal cells spread. In Darwin’s words, “Thus, as I believe, the most won-
derful of all known instincts, that of the hive-bee, can be explained by natural
selection having taken advantage of numerous, successive, slight modifications
of simpler instincts; natural selection having by slow degrees, more and more
perfectly, led the bees to sweep equal spheres at a given distance from each
other in a double layer, and to build up and excavate the waz along the planes
of intersection.” (Chapter 7, Darwin 1872).

It was exactly such ‘Darwinian fables’ that inspired the biologist and math-
ematician D’Arcy Wentworth Thompson to write his book On Growth and
Form (Thompson 1917). The central thesis of this book is that biologists
overemphasize the role of evolution and that many phenomena can be more
parsimoniously explained by applying simple physical or mathematical rules.
Thompson argued that the bees” hexagonal cells are a clear example of a pat-
tern formed by physical forces that apply to all layers of bubbles that are
pressed into a two-dimensional space. Bees’ wax is not different, the soft wax
forms bubbles that are simply pulled into a perfect hexagonal array by phys-
ical forces. Hence, the pattern forms spontaneously and no natural selection
or divine interference needs to be invoked (Ball 1999).

In fact, many instances of spontaneous pattern formation can be explained
by physical forces, and given the almost endless array of patterns and shapes
found around us, it is perhaps not surprising that such patterns are an in-
spiration for many people, scientists and non-scientists alike. Upon closer ex-
amination, amazing similarities reveal themselves among patterns and shapes
of very different objects, biological as well as innate objects. As we already
alluded above, the characteristic hexagonal pattern found on honeycombs are
not unique; the same pattern can be obtained by heating a liquid uniformly
from below. Autocatalytic reaction-diffusion systems will lead to Turing pat-
terns (think stripes on tigers) in both chemical and biological mediums (Kondo
and Asai 1995; Ball 1999), and minerals form patterns that have even been
mistaken for extra-terrestrial fossils (McKay et al. 1996).

The similarity of patterns found across a huge range of systems suggests
that there are underlying principles that are shared by both biological and
innate objects. Such similarities have been nicely illustrated by work on pat-
tern formation in bacterial colonies. When one manipulates the amount of
food available to bacteria and the viscosity of their medium, patterns emerge
that are remarkably similar to those found in, for example, snowflakes (Ben-
Jacob et al. 2000). In fact, the growth of bacterial colonies has proven to be
an important playground for testing ideas on non-living branching systems
(Ball 1999; Ben-Jacob and Levine 2001; Levine and Ben-Jacob 2004). As it
turns out, many branching patterns found across nature can be explained by
the same process, known as diffusion-limited aggregation, resulting from the
interactions of the particles, be they molecules or individual bacteria (Ball
1999).
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All patterns described above have been explained by approaching the sys-
tems from the bottom up: how do the particles interact with each other and
with their immediate environment? One may not really be surprised by the
fact that the same approach helps one to understand bacteria as well as
molecules. After all, bacteria aren’t really that different from molecules, are
they? In the following we will illustrate how such a bottom-up approach can
explain another remarkable feature of honeybees: the typical pattern of honey,
pollen and brood found on combs.

The honeybee’s comb is not only a marvel because of its almost perfect
hexagonal cells, the bees also seem to fill the cells with brood (eggs that
develop into larvae and then pupae and finally emerge as young workers or
males), pollen (to feed the brood) and nectar (which will be converted into
honey) in a characteristic pattern. This pattern consists of three distinct con-
centric regions: a central brood area, a surrounding rim of pollen, and a large
peripheral region of honey (Fig. 1). If we envision the honeybee colony as
a three-dimensional structure, this pattern is most pronounced in the cen-
tral combs which intersect a large portion of the almost spherical volume of
brood. How does this pattern come about? The storage of pollen close to the
brood certainly makes sense as it reduces the time needed to get the pollen
to the brood. But how do the bees know this? Do they use a blueprint (or
template) to produce this characteristic pattern, implying that there are par-
ticular locations specified for the deposition of pollen, nectar and brood? Or
is the pattern self-organized and emerges spontaneously from the dynamic
interactions between the honeybee queen, her workers and the brood? Scott
Camazine set out to determine which of these two hypotheses is the most
parsimonious (Camazine 1991).

The beauty of working on macroscopic entities such as insects is that you
can individually mark them. Honeybees are particularly suitable because we
can then house them in what we call an observation hive, a glass-walled home
for the bees. This means that we can study the interactions of the individually
marked bees without taking them out of their natural environment (see Fig. 1).

Camazine did just that. He monitored the egg-laying behavior of the queen,
of foragers that returned with pollen or nectar, and of nurse workers, those
that feed the brood. The first thing that he observed was that the queen
is rather sloppy in her egg-laying behavior, moving about in a zig-zag-like
manner, often missing empty cells and retracing her own steps. Camazine
further noticed that she has a clear preference to lay a certain distance from
the periphery of the comb and never more than a few cell lengths of the nearest
brood-containing cell. Interestingly, even though the queen somewhat has a
preference for at least the middle of the comb and the vicinity of brood, bees
returning with pollen or nectar did not seem to have a preference for specific
cells at all. When an empty comb was left in the colony and the deposition
of nectar and pollen observed, both could be found in any cell. Even though
such absence of a preference clearly refutes the blueprint hypothesis, it does
not explain how the characteristic pattern ultimately arises.
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Fig. 1. Because of their relatively large size, we can easily mark individual bees in a
colony. In this particular colony we marked 5,000 bees by combining numbered plates
and different paint colors. This allowed us to study their behavior at an individual
level. Photograph taken by M. Beekman.

As it turns out, bees do have a clear preference when they remove pollen
or honey from cells. Both honey and pollen are preferentially removed from
cells closest to the brood. By following the pattern of cell emptying during a
period in which foraging activity was low (overnight or during rain), Camazine
observed that all the cells that were emptied of their pollen or nectar were
located within two cells or less from a cell containing brood. No cells were
emptied that were further from brood cells. It is easy to see why the bees
would have a preference for the removal (through use) of pollen that is found
closest to the brood, as it is the brood that consumes the pollen. In addition,
nurse bees are the younger bees which restrict most of their activity to the
brood area (Seeley 1982).

The preferential removal of pollen and nectar from cells closest to cells
containing brood and the queen’s preference for laying eggs in cells close to
brood made Camazine realism that this might explain the honeybee’s char-
acteristic comb pattern. But how to prove this? This is where the physicist’s
approach comes in. By constructing a simulation model based on his behav-
ioral observations, Camazine was able to closely follow the emergence of the
pattern. Initially, both pollen and nectar were deposited randomly throughout
the frame with the queen wandering over the comb from her initial starting
point. Despite the random storage of pollen and nectar, the queen’s tendency
to lay eggs in the vicinity of cells that already contain brood rapidly results
in an area in which mostly brood is found. This is enhanced by the bees’ pref-
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Fig. 2. The typical pattern of honey (grey cells), pollen (white cells), and brood
(black cells) as seen on a honeybee’s comb. Shown is the top-left corner of the comb

erence to remove honey and pollen from cells close to brood, which increases
the availability to the queen of cells to lay eggs in. This further reduces the
number of cells available for storage of honey or pollen. Thus, the brood area
is continually freed of honey and pollen and filled with eggs resulting in a
compact brood structure. But how do the pollen and nectar get separated
(Fig. 2)7

Because initially both are deposited randomly, both pollen and nectar
will be present in the periphery of the comb. However, most pollen that gets
collected on a daily basis is consumed that same day. This means that given
the normal fluctuations in pollen availability, there is often a net loss of pollen,
with pollen present in the periphery being consumed at nearly the same rate
as pollen being stored elsewhere. At the same time, these empty cells are most
likely to be filled with nectar, as the nectar intake is much higher, and soon
there is no longer space to store pollen. Where is pollen stored then?

Eventually the only place left for pollen to be stored is the band of cells
adjacent to the brood. The developmental time from egg to adult is 21 days,
meaning that for three weeks a brood cell cannot be used for anything else.
But in the interface zone between the brood and the stores of honey at the
periphery, the preferential removal of honey and pollen continuously provides
a region in which cells are being emptied at a relatively high rate. And it
is these cells that are available for pollen. Other cells that become available
because bees emerge from them are found in the middle of the brood nest,
but these will then be preferentially emptied and again filled with eggs.

Without his computer simulation Camazine would not have been able to
fully understand how the behavior of the individual bees resulted in the orga-
nized pattern of brood, honey and pollen on the comb of the bees. And this
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is a general principle for understanding collective animal behavior: without
tools such as simulations or mathematics, it is impossible to translate individ-
ual behavior into collective behavior. And it is exactly with those tools that
originally came from disciplines outside of biology, and with the view that in-
teractions among individuals yield insights into the behavior of the collective,
that we biologists have learned from physics. In fact, we began this chapter by
illustrating that even biological phenomena can often more parsimoniously be
understood using physical explanations, and that many systems, both innate
and living, share the same physical principles. And it has exactly been these
similarities and the wide applicability of the mathematical rules that govern
diverse behaviors that have led to the field of Swarm Intelligence (e.g. Dorigo
et al. 1996; Dorigo and Di Caro 1999).

However, it is important to realise that our biological ‘particles’ are more
complex than molecules and atoms and that the ‘simple rules of thumb’ of
self-organization (Nicolis and Prigogine 1977) have only limited explanatory
power when it comes to biological systems (Seeley 2002). Bacterial colonies
may grow in a similar pattern as minerals, Turing patterns may be found
on fish, in shells and in chemical reactions, and we can understand the bees’
hexagonal cells using physics, but when it comes to biological systems, an
extra layer of complexity needs to be added. Besides the complexity of the
individuals, we cannot ignore natural selection acting on, for example, the
foraging efficiency of our ant colony, or the building behavior of our termites. If
the underlying principles that govern the building behavior of termites results
in colony-level behavior that is far from functional, this would be rapidly
selected against. Moreover, it is of no use to assume that certain systems
must behave similarly simply because they ‘look’ similar. It is true that if the
same mathematical model or behavioral algorithm captures the behavior of
different systems, then we can talk about similarities between systems that
go beyond simple analogy (Sumpter 2005). However, as we will explain in the
concluding section of this chapter, true biological inspiration needs to come not
from the superficial similarities between systems, but from the intricate and
often subtle differences between them. We shall illustrate this standpoint by
drawing examples from our own study systems: decentralized decision making
in social insects and the coordinated movement of animal groups.

2 Decentralized Decision Making

The evolution of sociality, the phenomenon where individuals live together
within a nest such as is found in many bees and wasps, and all ants and ter-
mites, has created the need for information transfer among group members.
No longer can each individual simply behave as if solitary, but actions by dif-
ferent group members need to be carefully tuned to achieve adaptive behavior
at the level of the whole group. Insect colonies need to make many collective
decisions, for example where to forage, which new nest to move to, when to
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reproduce, and how to divide the necessary tasks among the available work-
force. It is by now well known that such group-level decisions are the result
of the individual insects acting mainly on local information obtained from
interactions with their peers and their immediate environment (Bonabeau et
al. 1997; Camazine et al. 2001). In other words, decision making in insect so-
cieties is decentralized. To illustrate how insect colonies achieve this, we will
describe foraging and nest site selection in ants and honeybees.

2.1 Where to Forage?

In order to organize foraging, social insects need a form of recruitment. Re-
cruitment is a collective term for any behavior that results in an increase
in the number of individuals at a particular place (Deneubourg et al. 1986),
and allows insect societies to forage efficiently in an environment in which
food sources are patchily distributed or are too large to be exploited by single
individuals (Beckers et al. 1990; Beekman and Ratnieks 2000; Detrain and
Deneubourg 2002). In addition, social insects that transfer information about
the location of profitable food sources can exploit an area much larger than
those that lack such a sophisticated recruitment mechanism. Honeybees are a
prime example. Their sophisticated dance language (von Frisch 1967) allows
them to forage food sources as far as 10 km from the colony (Beekman and
Ratnieks 2000).

Exact recruitment mechanisms vary greatly among the social insects but
can be divided into two main classes: direct and indirect mechanisms. Mass
recruitment via a chemical trail is a good example of indirect recruitment.
The recruiter and recruited are not physically in contact with each other;
communication is instead via modulation of the environment: the trail. The
recruiter deposits a pheromone on the way back from a profitable food source
and recruits simply follow that trail. In a way such a recruitment mechanism is
comparable to broadcasting: simply spit out the information without control-
ling who receives it. The other extreme is transferring information, figuratively
speaking, mouth to mouth: direct recruitment. The best-known example of
such a recruitment mechanism is the honeybees’ dance language. Successful
foragers, the recruiters, perform a stylized ‘dance’ which encodes information
about the direction and distance of the food source found and up to seven
dance followers (Tautz and Rohrseitz 1998), potential recruits, are able to
extract this information based upon which they will leave the colony and try
to locate the advertised food source. Recruitment trails and the honeybee
dance language can be seen as the two extremes of a whole range of different
mechanisms used by social insects to convey information about profitable food
sources.

Many computer scientists are familiar with the double bridge experiment
as an example of the means by which foraging is organized in ant colonies. In
this experiment a colony of trail-laying ants is offered two equal food sources
located at the end of two paths of different lengths. After some time the



