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Preface

This edited volume contains the papers selected for presentation at the First
Workshop on Data Mining for Biomedical Applications (BioDM 2006) held in
Singapore on April 9, 2006. The workshop was held in conjunction with the 10th
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD
2006), a leading international conference in the areas of data mining and knowl-
edge discovery. The aim of this workshop was to provide a forum for discussing
research topics related to biomedical applications where data mining techniques
were found to be necessary and/or useful.

BioDM 2006 received a total of 35 full-length paper submissions from seven
countries. Each submitted paper was rigorously reviewed by three Program Com-
mittee members. Although many papers were worthy of publication, only 14 reg-
ular papers can be accepted in the workshop for presentation and publication in
this volume. The accepted papers were organized into three sessions according
to their topics, with four papers on database & search, four papers on bio data
clustering, and six papers on in-silico diagnosis. The distribution of the paper
topics indicated that database query, search, similarity measure, feature selec-
tion, and supervised learning remained the current research issues in the field.
In addition to the contributed presentation, the BioDM 2006 workshop featured
a keynote talk delivered by Limsoon Wong, who shared his insightful vision on
the bioinformatics research problems related to protein—protein interactions.

This workshop would not have been possible without the help of many col-
leagues. We would like to thank the Program Committee members for their
invaluable review and comments. Given the extremely tight review schedule,
their effort to complete the review reports before the deadline was greatly ap-
preciated. In addition, we found some reviewers’ comments were really excellent,
as good as what is usually found in a survey paper—critical, constructive, and
comprehensive. These comments were very helpful for us in selecting the papers.

Very importantly, we would like to acknowledge the PAKDD 2006 Conference
Chair Lim Ee Peng for coordinating with the publisher. Without his effort,
these proceedings may not have been published in time for the workshop. We
also thank Elaine Koh and Chen Ling for their effort and time in workshop
registration and website maintenance.

Thank you all and may the papers collected in the volume inspire your
thoughts and research.

April 2006 Jinyan Li
Qiang Yang
Ah-Hwee Tan
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Exploiting Indirect Neighbours and Topological
Weight to Predict Protein Function from
Protein-Protein Interactions

Hon Nian Chua, Wing-Kin Sung, and Limsoon Wong

School of Computing and Graduate School for Integrated Sciences and
Engineering, National University of Singapore,
3 Science Drive 2, Singapore 117543
{g0306417, dcsswk, dcswls}@nus.edu.sg

Abstract. Most approaches in predicting protein function from protein-
protein interaction data utilize the observation that a protein often share
functions with proteins that interacts with it (its level-1 neighbours).
However, proteins that interact with the same proteins (i.e. level-2 neigh-
bours) may also have a greater likelihood of sharing similar physical
or biochemical characteristics. We speculate that two separate forms of
functional association accounts for such a phenomenon, and a protein is
likely to share functions with its level-1 and/or level-2 neighbours. We are
interested to find out how significant is functional association between
level-2 neighbours and how they can be exploited for protein function
prediction.

We made a statistical study on recent interaction data and observed
that functional association between level-2 neighbours is clearly observ-
able. A substantial number of proteins are observed to share functions
with level-2 neighbours but not with level-1 neighbours. We develop an
algorithm that predicts the functions of a protein in two steps: (1) as-
sign a weight to each of its level-1 and level-2 neighbours by estimating
its functional similarity with the protein using the local topology of the
interaction network as well as the reliability of experimental sources;
(2) scoring each function based on its weighted frequency in these neigh-
bours. Using leave-one-out cross validation, we compare the performance
of our method against that of several other existing approaches and show
that our method performs well.

J. Li et al. (Eds.): BioDM 2006, LNBI 3916, p. 1, 2006.
© Springer-Verlag Berlin Heidelberg 2006



A Database Search Algorithm for Identification
of Peptides with Multiple Charges Using Tandem
Mass Spectrometry

Kang Ning, Ket Fah Chong, and Hon Wai Leong

Department of Computer Science, National University of Singapore,
3 Science Drive 2, Singapore 117543
{ningkang, chongket, leonghw}@comp.nus.edu.sg

Abstract. Peptide sequencing using tandem mass spectrometry is the process of
interpreting the peptide sequence from a given mass spectrum. Peptide sequenc-
ing is an important but challenging problem in bioinformatics. The advance-
ment in mass spectrometry machines has yielded great amount of high quality
spectra data, but the methods to analyze these spectra to get peptide
sequences are still accurate. There are two types of peptide sequencing methods
—database search methods and the de novo methods. Much progress has been
made, but the accuracy and efficiency of these methods are not satisfactory and
improvements are urgently needed. In this paper, we will introduce a database
search algorithm for sequencing of peptides using tandem mass spectrometry.
This Peptide Sequence Pattern (PSP) algorithm first generates the peptide se-
quence patterns (PSPs) by connecting the strong tags with mass differences.
Then a linear time database search process is used to search for candidate pep-
tide sequences by PSPs, and the candidate peptide sequences are then scored by
share peaks count. The PSP algorithm is designed for peptide sequencing from
spectra with multiple charges, but it is also applicable for singly charged spec-
tra. Experiments have shown that our algorithm can obtain better sequencing
results than current database search algorithms for many multiply charged spec-
tra, and comparative results for singly charged spectra against other
algorithms.

1 Introduction

As the volume of MS/MS mass spectra grows, the accompanying algorithmic tech-
nology for automatically interpreting these spectra has to keep pace. An increasingly
urgent problem is the interpretation of multi-charge spectra — MS/MS spectra with
charge 3, 4, and 5 are available from the publicly accessible GPM (Global Proteome
Machine) dataset [1]. It is foreseen that increasingly there will be more multi-charge
spectra produced and so the problem of accurate interpretation of these spectra will
become more important with time.

Most existing algorithms for peptide sequencing have been focused largely on inter-
preting spectra of charge 1. Even when dealing with multiply-charged spectrum, they
assume each peak is of charge 1. Only a few algorithms take into account or explicitly
make known that they taken into account spectra with charge 2 or higher [2-4].

J. Li et al. (Eds.): BioDM 2006, LNBI 3916, pp. 2—13, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Database searching algorithms [5-8] rely primarily on the completeness of data-
bases, and the availability of a good scoring mechanism. Traditional database search
methods have the common principle as this: the experimental spectrum is compared
with the theoretical spectrum for each of the peptide in the database, and the peptide
from the database with best match usually provides the sequence of the experimental
peptide.

The most widely used database search algorithms for analyzing mass spectra of
peptides has been software such as SEQUEST [5] and MASCOT [9]. These algo-
rithms search a sequence database for peptides sequences which would produce ions
of the mass observed for a particular spectrum, then score these candidate sequences
against the observed spectrum. The best match between the peptide tandem mass
spectrum and the database-derived peptide sequences is made via a combination of an
ion intensity-based score plus a cross-correlation routine. The problems with these
algorithms are that they only considered the ions of the mass observed for a particular
spectrum, so they can work well for peptide sequences already in the database, but
perform badly for peptides with post-translational modifications or other variations.

It is well known that it is almost impossible to find a peptide sequence that matches
exactly (100% match) with an entry in the database. Instead, many methods rely on
matching much shorter sequences called tags [6, 10]. However, for some of them [6],
the simple assumptions limit the identification accuracy.

In [6], the authors use tag sequence for the search of the peptide sequence. A frag-
mentation spectrum usually contains a short, easily identifiable series of sequence
ions, which yields a partial sequence. This partial sequence divides the peptide into
three parts-regions 1, 2, and 3-characterized by the added mass m,; of region 1, the
partial sequence of region 2, and the added mass m; of region 3. The construct, m,
partial sequence mj, is called a "peptide sequence tag" and it is a highly specific iden-
tifier of the peptide. An algorithm then uses the sequence tag to find the peptide in a
sequence database. The main problem of this approach is that the model used in this
algorithm is too simple. A 3-segment peptide sequence tag is used, but not enough to
capture several highly-confident fragment sequences. The database search may return
several candidates peptide sequences, but further discriminations are very limited.

Because of these problems of the current database search algorithms, it is ideal if we
can appropriately utilize all of (or as much as possible) the subsequences (tags) infor-
mation in the spectrum, and find out the peptide sequence in the database, or detect the
post-translational modification that has most support. Recently, the InsPecT algorithm
has been developed by Tanner etc. [10], which use more tags information for database
search. This algorithm has used score function similar to Dancik score [11] to generate
highly reliable tags from spectrum graph, extend tags and use trie to search for candi-
date peptides in database, and evaluate candidate peptides by statistical analysis.
Another database search algorithm based on a set of tags is SPIDER [12].

We have developed a new database algorithm that extend the idea of using tags [6],
and we have concentrated on the multi-charge spectrum data. We have tried to utilize
all of the tags information, and tried to get the best results based on this information.
In our algorithm, we first find out some strong tags from the spectrum, and connect
them by their mass differences; these tag-mass combinations are called patterns of the
peptide sequence, and the peptide sequences in the database that best match the pat-
terns are selected. This peptide sequence pattern (PSP) gives more flexibility and



4 K. Ning, K.F. Chong, and H.-W. Leong

accuracy to the algorithm, especially for the multiply charged spectra that are very
hard to interpret. Then a linear time database search process is used to search candi-
date peptides sequences by PSPs. These candidate peptide sequences are then scored
by share peaks count, ranked and output.

In the following part, we will introduce our formulation of the problem and the da-
tabase search algorithm. We will then describe our experiment settings and analysis of

the results in details.

2 Problem Formulation of Multi-charge Peptide Sequencing

Consider an MS/MS spectrum for a peptide sequence p = (a1a;...a,) where a; is the jth
amino acid in the sequence. The parent mass of the peptide is given by

m(p)=M = Z:=1 m(a, ) . Consider a peptide fragment o, = (a,a5...ay), for k < n that

k ,
has fragment mass m(pk):Zj=1m(a j) - The peaks in the spectrum come

from peptide fragmentation and each peak p can be characterized by the ion-type,
specified by (z, t, h)e (A, x A, x A), where z is the charge of the ion, ¢ is the basic
ion-type, and A is the neutral loss incurred by the ion. The set of ion-types
considered is A=(A,XA,xA;), where A, ={1,2,...,}, A, ={a,b,y}, and
A, ={¢,—H,0,~NH,}. The (z, t, h)-ion of the peptide fragment p, will produced
an observed peak p in the spectrum S, that has a mass-to-charge ratio of mz(p), that
can be computed from the following formula [4]:
m(p,)=mz(p)-z+(6(t)+6(h)+(z-1),

where 8(t) and 6(h) are the mass difference for the respective ion-type and neutral-loss,
respectively. The theoretical spectrum for p is defined in [4] as the set TS(p) = {p : p is
observed peak for (z, ¢, h)-ion of peptide fragment g, for all (z, ¢, h)e A and k=0,1,...,n}
of all possible observed peaks for all ion types, and all possible fragments of p.

In peptide sequencing, we are given an experimental mass spectrum and the prob-
lem is to determine the sequence of the original peptide. A spectrum S = {p;, p, ...,
P»} of maximum charge o is a set of n peaks where each peak p, is described by two
parameters — mz(p,), the observed mass-to-charge ratio and intensity(py), its intensity.
To account for peaks that correspond to ions of charge 2, an “extension” process is
performed to convert it to the equivalent peak of charge 1.

The shared peaks count between the experimental spectrum S and a peptide p is
defined as the number of peaks in § that has the same mass as those in 7S(p), the
theoretical spectrum of p.

We have followed the computational model in [4]. To account for the different ion-
type (especially in multi-charge spectra), [4] introduced the concept of the extended

spectrum S;’ where «is the maximum charge of the spectrum S, and S is the largest

charge considered for extension. In the extended spectrum S,Zf, we “extend” each

peak by generating a set of pseudo-peaks (or guesses) that correspond to the diff-
erent ion-types with charge < 4. Namely, for each peak p,eS and ion-type
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@z t, e ({1,..., f}XA, XA,), we generate pseudo-peak denoted by (p;, (z, t, h))
with a corresponding assumed fragment mass given by
m(p;,(z,t,h))=mz(p;)-z2+(0(t)+I(h))+(z—1). A corresponding extended
spectrum graph of connectivity (defined below) d, G, (S;), is also introduced. Each
vertex in this graph represents a pseudo-peak (pj, (z, #, h)) in the extended spec-
trum SZ » namely to the (z, ¢, h)-ions for the peak p;. For simplicity, we also denote the
vertex by (v;, (z, t, h)). Each vertex represents a possible peptide fragment mass m(v;,
(z, ¢, h)). An additional notion called the PRM (prefix residue mass) is also intro-
duced. This mass refers to the prefix mass of the interpreted peptide fragment mass
for vertex, and is defined as PRM,(v;) = m(v;) if t(v;))e {b-ion} else (a and y-ion)
PRM,(v)) =M —m(v)).

In the “standard” spectrum graph, we have a directed edge (u, v) from vertex u to
vertex v if PRM(v) is larger than PRM(u) by the mass of a single amino acid. In the
extended spectrum graph of connectivity d, G, (S,‘g), we extend the edge connec-
tivity definition to mean “a directed path of no more than d amino acids”. Thus, we
connect vertex u and vertex v by a directed edge (, v) if the PRM(v) is larger than
PRM(u) by the total mass of d’ amino acids, where d’ < d. In this case, we say that the
edge (u,v) is connected by a path of length up to d amino edges. Note that the number
of possible paths to be searched is 20¢ and increased exponentially with d. In practice,
we use d=2, except where it is explicitly stated otherwise. We illustrate the extended
spectrum graph with an example shown in Fig. 1.

vertices extend peaks mtroduce edges of length 2

881 1751 881

@ t

©

Fig. 1. The difference between G,( Slz) (left) and G( 522) (right). There are no paths from v, to
Vv, in G,(Sl2 ). but 4 paths in G,( 522) due to extension.

3 Database Search Algorithm

In our algorithm, we first find out some strong tags from the spectrum, and connect
them by their mass differences; these tag-mass combinations are called Peptide
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Sequence Patterns (PSPs), and the peptide sequences in the database that best match
the PSPs are selected for further process. These PSPs give more flexibility and accu-
racy to the algorithm. Our algorithm is called the PSP algorithm.

Peptide Sequence Patterns Algorithm

The PSP algorithm first compute a set, BST, of “best” strong tags. Informally, these
strong tags are highly reliable tags found in the spectrum S. To find strong tags, we
first restrict the possible ion-types those that appear most frequently. The restricted set
of ion-type is given by A% = (AIE X AR x A%) , where A’: ={1}, A¥={b,y}, and
A% ={@}. Namely, we consider only charge 1, an only b-ions and y-ions and no
neutral loss. We also define G,( S ,{ AR }), the extended spectrum graph with ion-
type restriction — namely, the spectrum graph G,( S{") where the ion types considered
are restricted to those in AR . Then a strong tag T of ion-type (z, t, h) € AR is a maxi-
mal path { vy, V), vy ..., v,) in the G;( S{* ,{ AR }), where every vertex v,e T'is of a (z, ¢,
h)-ion. In each component of the graph, PSP algorithm computes a “best” tag with
respect to some scoring function. Then the set BST is the set comprising the best tag
for each component in the spectrum graph. Typically, the number of tags is much
smaller than the number of peaks in S. (We refer the reader to [4] for more details.)

Given the set BST of best strong tag, the Peptide Sequence Patterns (PSPs) algo-
rithm then proceeds to find the PSP that result from paths obtained by “connecting”
the tags from BST. This is done by searching for paths in the graph G(BST) in which
the vertices are the strong tags in BST, and we have an edge from the tail vertex u of
T, to the head vertex v of T, if the PRM(v) is larger than PRM(u). We note two major
difference between G(BST) and the extended spectrum graph — first, the number of
vertices in G(BST) is small, and second, the number of edges is also very much
smaller since we link strong tags in a head-to-tail manner.

The peptide sequence patterns (PSPs) that represent the paths compose of the tag
fragments and mass fragments. Formally, PSP; = m,t,myt,...m,t,m,.,,, in which m; and
t; refer to mass difference and tag, respectively. Each tag in the sequence composes of
those consecutive amino acids with very high probability to be together. Each mass is
the sequence represents the value of masses between tags.

After PSPs are retrieved, the PSPs are scored and ranked according to shared peaks
count of the theoretical spectrum of the PSP and the experimental spectrum. Some top
PSPs can be selected for database search.

The database search algorithm is essentially an approximation pattern matching in
the database, with PSP (composed of tags and mass differences) as pattern. The
detailed database search algorithm will be described later.

After database search based on PSPs, several candidate peptides are obtained. For
each of candidate peptide sequences, score it by the shared peaks count of the theo-
retical spectrum of the candidate peptides and the experimental spectrum.

The scheme of the PSP algorithm and the description of the algorithm are illus-
trated in Fig. 2 and Fig. 3, respectively.
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e

— l PSP Scoring (Rank) I

[ Database Search |

Candidate Peptides

<: Peptide Scoring (Rank)

Strong Tags

Identified Peptides (Ranked)

Fig. 2. The scheme of the database search algorithm

1. Search for strong tags
e  Transform spectrum to extended spectrum graph
e  Select all of the best strong tags (BST) in extended spectrum graph
2. Generation of PSPs
e  Connect BSTs by mass differences
e  Generate a graph G, every vertex is a BST, every edge is one mass differ-
ence. Starting and ending vertex represent 0 and parent masses, respectively
o  List all of the paths from start to end vertexes
e  For each of the path P;, generate the peptide sequence pattern PSP,
Score and rank PSPs by share peaks count score.
3. Database search by PSP
e (details in later part)

Fig. 3. The description of the database search algorithm

Approximate Database Search Using PSP

The matched candidate peptides are searched in the database by PSP. By searching
the database, we can find out those protein sequences that have a certain number of
matched tagged (with 1 or 2 amino acids errors). But whether there is good match of
one peptide sequence in the protein with the whole PSP is not clear. Therefore, it is
also a very interesting pattern matching problem.

The approximate matching and pattern matching problem in the context of peptide
sequencing is a special matching problem, since it involves both approximate tags
matching and approximate masses matching. We have proposed a novel algorithm to
solve this novel problem.

The research on string matching has been investigated by many researchers, and
the theory and algorithms are quite developed now. It is known that inexact string
matching with errors can be done in linear time, and exact string matching with wild-
card can be done in linear time [13, 14]. Moreover, the semi-numerical inexact string
matching algorithms [13, 14] can be very efficient if the patterns are relatively short.
In the PSP algorithm, we have used the semi-numerical inexact string matching algo-
rithms, and the database search process has been done in linear time.

The formal problem definition and the procedure of our algorithm are listed in Fig. 4.
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Problem: Approximate database search using PSP

e Input:
1) peptide sequence pattern (PSP)
PSP; = myt;myts...myt,m,.,; (m; and ¢; refer to mass and tag, respectively)

2) database sequence, Seq

e  Output:
1) Subsequence Seg; (or subsequences) in Seq that fulfill the requirements
e  Requirements:

1) Approximate match with tags #; in Seq in order, with strict tolerance (every
tag with <2 amino acids error); if at most m<n tags are present for every
database sequences, then these m tags should be approximately matched

2) Approximate match with masses m; in Seq in order, with loose tolerance
(every mass with <50 Da mass error)

3) Efficient process

Procedure: Approximate database search using PSP
1. Select the top PSPs (currently top 3), search database for candidate peptides that ap-
proximately match with the tags and masses of these PSPs within certain tolerance.
2. Score and tank the candidate peptides by the share peaks count between their theo-
retical spectrum and experimental spectrum.
3. Output these peptide sequences.

Fig. 4. Formal description of the approximate pattern matching problem; and the procedure for
the PSP algorithm

An illustration of approximate match of PSP to the peptide sequences in the data-
base is in Fig. 5.
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Fig. 5. An example of the match of the peptide sequence pattern (first row) and the peptide
sequence in the database (second row)

As illustrated in Fig. 5, the PSP is “[205.343]RVTQ[370.879]KVS[480.166]”, with
numbers in brackets the mass differences between tags; and the matched peptide se-
quence is “SIRVTQKSYKVSTSGPR”. In this example, the two tags “RVTQ” and
“KVS” have matched the identical fragments in the peptide sequence (in other cases,
1 or 2 amino acids mismatches are tolerable). The three mass differences also match
with the fragments having similar masses.

As to the running time, for one PSP having length of m and one peptide sequence
in database having length n, the algorithm can operate in O(mm+n) time. This is much
better than the naive sequence matching method, which requires O(m*n) time. Since
there are thousands of peptide sequences in database, the efficiency improvement is
very significant. If we load the peptide database into memory once, and search several
PSPs against it, the average processing time for one PSP is even shorter.



