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Preface

This book contains a systematic exposition of the elements of the
theory of dynamical systems in metric spaces with emphasis on the stab-
ility theory and its application and extension for ordinary autonomous
differential equations.

In our opinion, the book should serve as a suitable text for courses
and seminars in the theory of dynamical systems at the advanced under-
graduate and beginning graduate level, in mathematics, physics and
engineering.

It was never our intention to write a treatise containing all known
results on the subject; but we have endeavored to include most of the
important new results and developments of the past 20 years. The
extensive bibliography at the end should enhance the usefulness of the
book to those interested in the further exploration of the subject.

Students should have completed an elementary course in ordinary
differential equations and have some knowledge of metric space theory,
which is usually covered in undergraduate courses in analysis and topo-
logy.

Each author strongly feels that any mistakes left in the book are
attributable to the other author, but each would appreciate receiving any
comments from the scientific community.

We are obliged to Professor AARON STRAUSS for reading the entire
typescript and pointing out several corrections. We would also like to
thank Doctors FLORENCIO CASTILLO, LAWRENCE FRANKLIN, CESEAW
OrEecH and GIuLIO TRECCANI for help in proofreading the galleys.

1970
s N. P. Buartia - G. P. Szeco



Notation

Set Theoretic Notation

Throughout the book standard set theoretic notations are used. Thus (SR AN
stand for set inclusion, set union and set intersections, respectively. For a given set
M, oM, FM, M, @ (M) denote the boundary, interior, closure, and complement of
the set M, respectively. For given sets 4, B, the set 4 — B is the set difference.

Other standardly used set theoretic notations are:

X

92X

R

Rn
R+
R-

Y]

-]
[l
<z, 9)
S, x)

S(M, )
Sx, «]

S[M, «]
H (v, x)

H (M, )
{xn} or {x"}
Xy —> X

et

e

(X, R, )

Tty
y(#)
yH() (v~ ()

a metric space with metric p.

family of all subsets of X.

set of real numbers.

real n-dimensional euclidean space.

set of non-negative reals.

set of non-positive reals.

the empty set.

absolute value of a real number.

euclidean distance norm. |

the scalar product of vectors #, v in R”.

for given € X and ¢ > 0 is the open ball of radius x > 0 centered
at x, ie., the set {y: g(x,9) < a}.

the set {y: o(y, M) < &}, where M C X and x > 0 are given.

the closed ball of radius o = 0 centered at #, i.e., the set {y: o ¥
= o)

the set {y: o (y, M) = a}.

the spherical hypersurface of radius & = 0 centered at ¥, i.e., the set
{Viely) =a}

the set {y: o(y, M) = a}.

a sequence.

sequence {¥,} converges to x.

family of continuously differentiable functions.

family of twice continuously differentiable functions.

Notation Pertaining to Dynamical Systems

dynamical system on a space X (I, 1.1, p. 5).

phase map of a given dynamical system (I, 1.1, p- 5).
transition corresponding to a given 1€ R (p. 6).

motion through » (p. 6).

trajectory through x (II, 1.9, p. 14).

positive (negative) semi-trajectory through x (11, 1.9, p. 14).



Notation XI

x) (A~ x)) positive (negative) limit set of » (1L, 3.1, p. 19)."
x) (D~ (v)) positive (negative) prolongation of » (II, 4.1, p. 24).
]+ (x (/- (%)) positive (negative) prolongational limit set of » (II, 4.1, p. 25).
DY (%) (D7 (#)) for given ordinal number «, the x-th positive (negative) prolonga.tlon
of ¥ (VIL, 1.12, p. 123).
JE@) ( J= (x)) for given ordinal number «, the x-th positive (negative) prolonga-
tional limit set of » (VIIL, 3.1, p. 129).
D (M) uniform positive prolongation of a set M (V1I, 2.11, p. 128).
D+(M, U) for given M, U in X, the positive prolongation of M, relative to U
(I1, 4.10, p. 29). \

A, (M) region of weak attraction of M C X (V, 1.1, p. 56).
A (M) region of attraction of M C X (V, 1.1, p. 56). )
Ay (M) region of uniform attraction of M C X (V, 1.1, p. 56). i
% the generalized recurrent set (VII, 3.6, p. 131).
operator used in the deﬁmtlon of higher prolongation (VII, 1.1,
p. 120).
S operator used in the definition of higher prolongation (VII, 1.1,

p. 120).
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Introduction

The theory of dynamical systems may be said to have begun as a
special topic in the theory of ordinary differential equations with the
pioneering work of HENRI POINCARE in the late 19th century. POINCARE,
followed by Ivar BENDIXSON, studied topological properties of solutions
of autonomous ordinary differential equations in the plane. The Poin-
caré-Bendixson theory is now a standard topic of discussion in courses
on ordinary differential equations, and is adequately covered in all its
details in the books of, say, CODDINGTON and LEVINSON [1], LEFSCHETZ
[1], HARTMAN [1], SANSONE and ConTI [1)}, and NEMYTSKII and STEPA-
Nov [1]. Of these, HARTMAN’S book contains the most detailed and recent
exposition. ;

Almost simultaneously with PoINCARE, A.M.LiapuNov developed
his theory of stability of a motion (solution) for a system of # first order
ordinary differential equations. He defined in a precise form the concept
of stability, asymptotic stability, and instability; and gave a ‘“method”
(the second or direct method of Liapunov) for the analysis of the stability
properties of a given solution of an ordinary differential equation. Both
his definition and his “method” characterize, in a strictly local setting,
the stability properties of a solution of the differential equation. As such,
the Liapunov theory is strikingly different from the Poincaré theory,
in which, on the contrary, the study of the global properties of differen-
tial equations in the plane play a major role.

One of the main aspects of the Poincaré theory is the introduction of

"the concept of a trajectory, i.e., a curve in the x, x plane, parametrized
by the time variable ¢, which can be found by eliminating the variable ¢
from the given equations, thus reducing it to a first order differential
equation connecting x and x. In this way, POINCARE set up a convenient
geometric framgwork in which to study qualitative behavior of planar
differential equations. POINCARE was not interested in the integration of
particular types of equations, but in classifying all possible behaviors

1 Bhatia/Szegs; Stability Theory



2 Introduction

of the class of all second order differential equations. By introducing
this concept of trajectory, POINCARE was able to formulate and solve, as
topological problems, problems in the theory of differential equations.

In the above fashion POINCARE paved the way for the formulation
of the abstract notion of a dynamical system, which can be essentially
attributed to A.A.MArRKGv and H. WHITNEY. These two authors sepa-
rately noticed that one could study the qualitative theory of families
of curves (trajectories) in a suitable space X, provided that these families
are somehow restricted in their possible behavior, e.g., if they are
defined, as having been generated by a general one-parameter topolo-
gical transformation group acting on X.

Great impetus to the theory of dynamical systems came from the
work of G.D.BIRKHOFF, who may truly be considered as the founder
of the theory. His celebrated 1927 monograph on Dynamical Systems
(BIRkHOFF [1]) is the basis of much of the research which came in the
1930’s and 1940’s and even today it is not outdated. BIRKHOFT established
the two main streams of work on the theory of dynamical systems, name-
ly, the topological theory and the ergodic theory.

In 1947, V.V.NEmyTskil and V.V.STtEPANOV [1] completed their
“Qualitative Theory of Differential Equations” which to this day has
served as a standard reference for all the major development in the
theory of dynamical systems up to the middle 1940’s. In 1949, NEMYT-
skII [10] wrote a survey paper on the topological problems in the theory
of dynamical systems, which sums up almost all the research into the
topological theory to the end of 1940’s.

During the 1950’s a relatively large effort went into the generalization
of the concept of a dynamical system to topological transformation
groups. Thus in 1955 the book of W.H.GoTTscHALK and G.A. HEDLUND
[1] appeared, and a large body of research has appeared since in print.
In this connection the work of R. ELL1s, H. FURSTENBERG, J. AUSLANDER,
H.Cuu, F.HaAHN, S. KAKUTANI, besides GOTTSCHALK and HEDLUND, is
noteworthy. On the other hand problems on structural stability in ordi-
nary differential equations have led to the efforts at introducing the
concepts and methods of differential topology and the theories of
S.SmaLE, D.V.ANosov, J.Mosgr, M.Peixoro, and L.MARkuS. In this
connection AN0OsOV’s monograph [1] is noteworthy.

& More recently the basic theory has been extended by bringing in, the
stability problems a la Liapunov, characteristically absent in earlier
works on_dynamical systems and topological transformation groups. In
this connection, TAR0 URA’s work, in particular his theory of prolonga-
tions, and its connections with stability has clearly shown that a signifi-
cant portion of stability theory is topological in nature and hence belongs
to the main stream of the theory of dynamical systems. An attempt in
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bringing in the direct method of Liapunov was made by V.I.Zusov [1].
However, ZuBov- mainly carried over to flows in metric spaces, results
and methods previously known in differential equations without attempt-
ing to develop an independent theory.

#0The present volume was thus conceived to present in an easy and
readable fashion the recent research in the theory of dynamical systems
on metric spaces, and especially the stability theory together with its
concrete applications to the theory of differential equations.

This book does not introduce several interesting areas of modern day
research, such as the theory of structural stability (which requires
some knowledge of differential topology), ergodic theory, and the general
theory of topological transformation groups. To keep the presentation
at a level easily accessible to undergraduate students in their junior
or senior years (who have had some exposure to metric spaces and
differential equations), we have not introduced local dynamical systems,
although most results are true for such systems. Local semi-dynamical
systems (N.P.BuaTia and O.HaJEx [1]), flows without uniqueness
(G.P.SzeEGO and G. TRECCANI [1]), are other major areas of development
today. The present book should be helpful to all those desiring to
work in any one of the above mentioned fields of study and research,
which are not covered in this volume.

As to material covered in this volume, Chapters I—VII contain the
basic theory of dynamical systems in metric spaces and Chapters VIII
and IX contain applications and extensions of the stability theory
(Chapter V) to dynamical systems defined by ordinary differential equa-
tions. Specifically, Chapter I contains the definition of a dynamical
system and some examples to indicate various fields of application.
Chapter I1 contains elementary notions which remain invariant under
certain topological transformations of dynamical systems. Chapter III
deals mainly with minimal sets and their structure. Chapter IV is devoted
to the study of dispersive and parallelizable dynamical systems and con-
cludes the part of the book devoted to the basic theory. Chapter V deve-
lops the main theme of the book, i.e., the stability and attraction theory.
The theory presented here differs rather strongly from the one developed
by ZuBov, being essentially based on the concept of weak attraction
(absent in ZuBov’s work). Chapter VI is devoted to a more specific
problem: the classification of flows near a compact invariant set. Some
results are given, but many problems in this are still open. Chapter VII
contains the theory of higher prolongations originated by T.Ura with
~ applications to absolute stability and generalized recurrence. Chapter VIII
deals with the geometrical theory of stability for ordinary autonomous
differential equations including various extensions of Liapunov’s direct
method. Chapter IX is again devoted to a more specific problem of

1*




4 Introduction

characterizing stability and attraction concepts via non-continuous Lia-
punov functions; these are concepts like the weak attractor, which are
not characterizable by continuous Liapunov functions.

Regarding the formal structure of the book, each chapter is divided
into sections, followed by an un-numbered section of notes and references.
In each section, individual items (Definitions, Theorems, etc.) are
numbered consecutively. Each item may be subdivided into consecutively
numbered subitems. References to the same chapter do not mention
the chapter number. Thus, for example, reference 2.5.3 indicates, sec-
tion 2, item 5, subitem 3 of the same chapter. References to other chap-
ters contain an indication of the chapter number. Thus II, 3.17 denotes
item 17 of section 3 in Chapter II. References to the bibliography are
given by the author’s name followed, if necessary, by an item number
between brackets.



Chapter I

Dynamical Systems

In this chapter we introduce the definition of a dynamical system or
what is also called a continuous flow. Several general examples are given
to motivate and prepare the reader for the study of the theory of dyna-
mical systems. Throughout the book the symbol X denotes a metric
space with metric p and R stands for the set of real numbers.

1. Definition and Related Notation

1.1 Definition. A dynamical system on X is the triplet (X, R, @),
where 7 is a map from the product space X X R into the space X satis-
fying the following axioms:
1.1.1 mw(x, 0) =« for every x € X (identity axiom),
1.1.2 w(m(x, 1), ) =m(x, 8, + 1) for everv x€ X and £, 4, in R
(group axiom),
1.1.3 7 is continuous (continuity axiom).

Given a dynamical system on X, the space X and the map x are
respectively called the phase space and the phase map (of the dynamical

system). Unless otherwise stated a dynamical system on X is always
assumed given.

In the sequel we shall generally delete the symbol 7. Thus the image
7 (x, ¢) of a point (x, £) in X X R will be written simply as x£. The identity
and the group axioms then read

1.1.4 x0=1x foreveryxc X,
115 «t(ty) =x( + 1) forevery x€ X and £, ¢, in R.

In line with this notation, if M C X and A C R, then MA is the set
{xt: x€ M and t€ A}. If either M or A4 is a singleton, i.e., M = {x} or
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A = {t}, then we simply write x4 and Mt for {x} A and M {¢}, respec-
tively. For any x € X, the set xR is called the trajectory through x (see
II, 1.9).

The phase map determines two other maps when one of the variables
x or ¢t is fixed. Thus for fixed ¢€ R, the map n‘: X — X defined by
‘7t (x) = xt is called a tramsition, and for a fixed x€ X, the map =,:
R — X defined by =, (f) = «t is called a motion (through x). Note that =,
maps R onto xR.

The following theorem expresses an important property of the transi-
tions.

1.2 Theorem. For each /€ R, #' is a homeomorphism of X onto
itself.

Proof. For any ¢€ R the transition s’ is continuous as & is such.
To see that &' is one-to-one and onto observe that if y¢ = z¢, then
y = z follows fromy =y 0 =y (t — t) = yt(—t) = 2t (—t) = 2(t — ¢) =
20 = z. Again, if y € X, then = (x) =y for x =y (—t) is easily verified.
Finally to see that s has a continuous inverse we need only show that
the transition s~ is the inverse of . To see this note that for any two
transitions #* and #°, the composition #fo z* is the transition z!*s,
because for any x € X,

7o 7 () = 7t (w () = ' (xs) = xs(f) = x(t + s) = A'*5(x).
Note also that the transition #° is the identity, since for any x¢€ X,
70(x) = x 0 =x. Since now o = a*~* = A the transition m—*
is the inverse of #’.

1.3 Exercises.

1.5.1 Show that the transitions #/, ¢ € R, form a commutative group
with the group operation being the composition of transitions.

1.3.2 For any x€ X and [q, b] C R, the set x[a, b] is compact and
connected. '

2. Examples of Dynamical Systems

2.1 Ordinary Autonomous Differential Systems. Consider the auto-

nomous differential system
ax 5

where f: R* — R" (R"is the real n-dimensional euclidean space) is con-
tinuous and moreover assume that for each x€ R” a unique solution
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@ (¢, x) exists which is defined on R and satisfies ¢ (0, ¥) = x. Then it is
well known (see for example CODDINGTON and LEVINSON [1], chapters 1
and 2) that the uniqueness of solutions implies

2.1.2 @, @) =@, +t,x) forié,t,in R

and considered as a function from R X R”" into R”, ¢ is continuous in its
arguments (section 4, chapter 2 in CopDINGTON and LEVINSON [1]). It
is clear that the map = : R*X R — R" such that z (x, {) =@ (¢, x) defines
a dynamical system on R”. We remark that the conditions on solutions
of 2.1.1, as required above, are obtained, for example, if the function f
satisfies a global Lipschitz condition, i.e., there is a positive number %
such that '

213 ||f(x) —fW)|| <k|x—y!| forallx,yinR".

2.2 Ordinary Autonomous Differential - Systems (Continued). To
illustrate that the theory of dynamical systems as defined in this chapter
is applicable to a much larger class of ordinary autonomous differential
systems we consider a system

221 "Z_i—f@), rcR"

where f: D — R" is a continuous function on some open set D C R*, and
for each x € D, 2.2.1 has a unique solution ¢ (¢, x), ¢ (0, x) = x defined
on a maximal interval (a,,b,), —c0 < a, < 0<b, = + oo. For each
x€D define y+(x) ={p(tx): 0=t<b,l and y=(x) = {@(t x):
a, <<t = 0}. y*(x) and y~(x) are respectively called the posmve and
negatwe tra]ectory through the point x € D. We will show that to each
system 2.2.1, there corresponds a system

d.
222 Z=i=g(x), xcR",

where g: D — R", such that 2.2.2 defines a dynamical system on D with
the property that for each x € D the systems 2.2.1 and 2.2.2 have the
same positive and the same negative trajectories. Thus in general it is
sufficient to consider 2.2.2 instead of 2.2.1.

If D = R", then given 2.2.1, we set
: dx . f(x
228 @=r=e0 =13y

where || - || is the euclidean-distance norm. If D 4= R", then 0D == 0 and
is closed. In this case, given 2.2.1, we set

x . f(#) o (#, oD)
& =*=80) =176 T+ ot oD) ’

2.2.4



