Trey Ideker
Vineet Bafna (Eds.)

Systems Biology and
Computational Proteomics

Joint RECOMB 2006 Satellite Workshops

on Systems Biology and on Computational Proteomics
San Diego, CA, USA, December 2006

Revised Selected Papers

LNBI 4532

B @ Springer




Y " Trey Ideker Vineet Bafna (Eds.)

Systems Biology and
Computational Proteomics

Joint RECOMB 2006 Satellite Workshops

on Systems Biology and on Computational Proteomics
San Diego, CA, USA, December 1-3, 2006

Revised Selected Papers

2 )
el ® K’,
i a5

4
N i

lllHlﬁlllllﬁlIll”llll‘l)lllll

@ Sprin ger E2007003058



Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Trey Ideker

University of California
Department of Bioengineering
San Diego, CA 92093, USA
E-mail: tideker@ucsd.edu

Vineet Bafna

University of California

Computer Science and Engineering Dept.
San Diego, CA 92093, USA

E-mail: vbafna@cs.ucsd.edu

Library of Congress Control Number: 2007931338

CR Subject Classification (1998): F.2, G.3, E.1, H.2.8, J3
LNCS Sublibrary: SL 8 — Bioinformatics

ISSN 0302-9743
ISBN-10 3-540-73059-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73059-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12076215 06/3180 543210



Lecture Notes in Bioinformatics 4532
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science



Preface

The RECOMB Satellite Conferences on Systems Biology and Computational
Proteomics were held December 1-3, 2006, at La Jolla, California. The Sys-
tems Biology meeting brought researchers together on various aspects of sys-
tems biology, including integration of genome-wide microarray, proteomic, and
metabolomic data, inference and comparison of biological networks, and model
testing through design of experiments. Specific topics included:

— Pathway mapping and evolution in protein interaction networks

— Inference of protein signaling networks for understanding cellular responses
and developmental programs

— Model prediction of drug mechanism of action and toxicity

— Multi-scale methods which bridge abstract and detailed models

— Systematic design of genome-scale experiments

— Modeling and recognition of regulatory elements

— Identification and modeling of cis-regulatory regions

— Modeling the structure and function of regulatory regions

Comparative genomics of regulation

With the sequencing of the genome, and subsequent identification of the parts
list (the gene and their protein products), there is a renewed emphasis on study-
ing the proteome. This year, the computational proteomics meeting focused on
on computational mass spectrometry. Mass spectrometry is emerging as a key
technology for proteomics. The last few years have seen tremendous improve-
ment in the quality and quantity of available peptide mass spectrometry data,
as well as the realization that advanced computational approaches are critical to
the success of this technology. The conference explored the use of this technology
in various proteomic applications, including, but not limited to: protein identifi-
cation and quantification in specific cellular environments; structural genomics;
networks of protein interaction; post-translational modifications; and others.

We received approximately 50 full paper submissions to the joint workshops.
After review, a total of 20 were invited for oral presentations, adding to 14
plenary talks. These papers appear either as extended abstracts in this volume
or are published in the journal Molecular Systems Biology.

Finally, we gratefully acknowledge support from our sponsors: the Inter-
national Society for Computational Biology, RECOMB Steering Committee,
the California Institute for Telecommunications and Information Technology
(Calit2), the UC Discovery Program, and Pfizer La Jolla.

December 2007 Vineet Bafna
Trey Ideker
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Not All Scale Free Networks Are Born Equal:
The Role of the Seed Graph in PPI Network Emulation

Fereydoun Hormozdiari', Petra Berenbrink', Natasa Przulj?, and Cenk Sahinalp’

1 School of Computing Science, Simon Fraser University, Canada
2 Department of Computer Science, University of California, Irvine, USA

Abstract. The (asymptotic) degree distributions of the best known “scale free”
network models are all similar and are independent of the seed graph used. Hence
it has been tempting to assume that networks generated by these models are sim-
ilar in general. In this paper we observe that several key topological features of
such networks depend heavily on the specific model and the seed graph used.
Furthermore, we show that starting with the “right” seed graph, the duplication
model captures many topological features of publicly available PPI networks very
well.

1 Introduction

In the past few years protein-protein interaction (PPI) networks of several organisms
have been derived and made publicly available. Some of these networks have interest-
ing topological properties; e.g. the degree distribution of the Yeast PPI network is heavy
tailed (i.e. there are a few nodes with many connections). It has been argued that the
degree distribution of these networks are in the form of a power-law[14], [24].! Since
well known random graph models also have power-law degree distributions [3], [8],
[25] it has been tempting to investigate whether these models agree with other topolog-
ical features of the PPI networks.

There are two well known models that provide power law degree distributions (see
[101, [9], [4]). The preferential attachment model [2], [8], was introduced to emulate
the growth of naturally occurring networks such as the web graph; unfortunately, it is
not biologically well motivated for modeling PPI networks. The duplication model on
the other hand [7], [22], [18] is inspired by Ohno’s hypothesis on genome growth by
duplication. Both models are iterative in the sense that they start with a seed graph and
grow the network in a sequence of steps.

The degree distribution is commonly used to test whether two given networks are
similar or not. However, networks with identical degree distributions can have very
different topologies.> Furthermore, it was observed in [23] that given two networks
with substantially different initial degree distributions, a partial (random) sample from

! Some recent work challenge this by attributing the power law like behavior to sampling issues,
experimental errors or statistical mistakes [23], [16], [21], [19], [12].

2 Consider, for example, an infinite two dimensional grid vs a collection of cliques of size 5; in
both cases all nodes have degree 4.

T. Ideker and V. Bafna (Eds.): Syst. Biol. and Comput. Proteomics Ws, LNBI 4532, pp. 1-13, 2007.
(© Springer-Verlag Berlin Heidelberg 2007



2 F. Hormozdiari et al.

those networks may give subnetworks with very similar degree distributions. Thus the
degree distribution can not be used as a sole measure of topological similarity.

In the recent literature two additional measures have been used to compare PPI net-
works with random network models. The first such measure is based on the k-hop
reachability. The 1-hop reachability of a node is simply its degree (i.e. the number of its
neighbors). The k-hop reachability of a node is the number of distinct nodes it can reach
via a path of < k edges. The k-hop reachability of all nodes whose degree is ¢ is the av-
erage k-hop reachability of these nodes. Thus the k-hop reachability (for k£ = 2,3,...)
of nodes as a function of their degree can be a used to compare network topologies.
An earlier comparison of the k-hop reachability of the Yeast network with networks
generated by certain duplication models concluded that the two network topologies are
quite different [5]. The second similarity measure is based on the graphlet distribution.
Graphlets are small subgraphs such as triangles, stars or cliques. In [16] it was noted
that certain “scale free” networks are quite different from the Yeast PPI network with
respect to the graphlet distribution. This observation, in combination with that on the k-
hop degree distribution seem to suggest that the known PPI networks may not be scale
free and existing scale free network models may not capture the topological properties
of the PPI networks.

There are other topological measures that have been commonly employed in com-
paring social networks etc. but not PPI networks. Two well known examples are the
betweenness distribution and the closeness distribution [26]. Betweenness of a vertex v
is the number of shortest paths between any pair of vertices » and w that pass through v,
normalized by the total number of such paths. Closeness of v is the inverse of the total
distance of v to all other vertices u. Thus one can use betweenness and the closeness
distributions, which respectively depict the number of vertices within a certain range of
betweenness and closeness values can be used to compare network topologies.

2 Network Generation Models

The two network network models we study here both start with a small seed graph and
add one node to it in each iteration. Let G(¢t) = (V (t), E(t)) be the graph at the end of
time step ¢, where V' (¢) is the set of nodes and E(t) is the set of edges/connections. Let
v; be the node generated in time step ¢. Given a node v, we denote its degree at the end
of time step ¢ by d;(v;).

Preferential attachment model. The preferential attachment model was analyzed in [2],
[6], [8] ,[10]. In step ¢ it generates v; and connects it to every other node v, indepen-
dently with probability c-d;—1 (v, ) /2| E(t —1)|, where c is the average degree of a node
in G; i.e. v; prefers to connect itself to high degree nodes.

Duplication model. This model is based on Ohno’s hypothesis of genome evolution [7],
[18], [22]. In iteration ¢, a node v, of G(t — 1) is picked uniformly at random and “du-
plicated”, i.e. an exact copy of v, as v; is generated. The model then updates v,’s edges,
first by deleting each of its edges with probability (1 — p), then by connecting each node
vy (except the neighbors of v, ) to v; independently with probability r/|V (¢)|. Here, p
and r are user defined parameters. Much of the earlier work on the duplication model
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aim to maintain a constant average degree throughout the generation of the network;
this is achieved by setting r = (1/2 — p).a.

As mentioned earlier, the degree distribution of the preferential attachment model
as well as the duplication model asymptotically approaches a power law [2], [8], [10],
[9]. More specifically, in the log-log scale, it forms a straight line (this is valid for only
“high degree” nodes) whose slope is independent of the seed graph and a function of the
values of p and r for the duplication model or ¢ for the preferential attachment model.
Thus, the two iterative models are equivalent with respect to the degree distribution.

Both the preferential attachment and the duplication model produce many
singletons ® [4]. Singletons are nodes which are not connected to any other node. Un-
fortunately there are no known bounds on the number of generated singletons in the
duplication model. In the duplication model, for the special case r = 0, p = 1/2, the
proportion of singletons asymptotically approaches 1. However, the number of single-
tons in known PPI networks is very small.

Modified duplication model. 1t is well known that the number of singletons in PPI
networks are quite limited. This does not come as a surprise as genes with no function-
ality are not conserved during evolution. Thus a slightly modified duplication model
which deletes each singleton node as soon as it is generated may better emulate the
growth of PPI networks. This model has also been shown to achieve a power law degree
distribution [4].

Unfortunately, similar to the number of singletons in duplication model, in modified
model the total number of generated nodes is not known. Moreover, it is not known
which values of p and r ensure that the expected average degree is constant through all
iterations. In Section 2.1 we derive conditions on p and r that are necessary for having
a constant expected degree. We later use the derived relationship between p and 7 so
that the modified duplication model can well approximate the desired average degree
as well as the degree distribution of the PPI networks under investigation.

2.1 The Parameters of the Modified Duplication Model

Here we show how to determine conditions on deletion probability 1 — p and insertion
probability r so that the expected average degree of the network can be set to any
given value. For this, we make the the assumption that the degree frequency distribution
and the average degree of nodes are fixed asymptotically once the values of p and r
are determined. Let G(t) = (V(t), E(t)) be the network generated by the modified
duplication model and let n(t) = |V (t)| and e(t) = |E(t)]. Also, let ng(t) be the
number of nodes in time step ¢ with degree k and a(t) be the average degree of nodes
in G(t). Finally let Px(t) = ng(t)/n(t), the frequency of nodes with degree k at time
step t. We assume that P;(k) is asymptotically stable, i.e. Py(t) = Px(t + 1) for all
1 < k < t for sufficiently large values of . In other words we assume that Py (t) = dj

3 We also note that the known PPI networks have several self loops. Both the preferen-
tial attachment and the duplication models can be modified slightly to produce such self
loops(homodimers).
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for some fixed dj. By definition

a(t):zt: -""(t) Zk Pi(t Zk di.

k=1

Now we can calculate the average degree a(t + 1) under the condition that degree
frequency distribution is stable and a(t) = a, a constant.

n(t) - a(t)

Ezple(t+ )] =e(t) + > k- Pu(t) - p+r= 5

k=1

+p-a(t)+r.

Let Prs(t) be the probability that v;, 1 ends up as a singleton.

t

P =S P (- (1- )" x (1—p)-
n=3 A0 (-p (1- ) e

Since this probability does not depend on ¢ asymptotically, we can set Pr(t) = Pr,.
Now we can calculate the expected number of nodes and the expected number of edges
instept + 1.

Ezpln(t +1)] = Prs-n(t) + (1 — Prs) - (n(t) + 1).

Ezple(t + 1)) = Eap [n<t+ ”;’(” D]

Ezple(t +1)] = g - (Prs-n(t) + (1 — Pry) - (n(t) + 1)).

Comparing the above equation with the first equation for Ezple(t + 1)] we get

- Exp[n(t + 1))

N e

g-(Prs n(t)+(1—Pry)-(n(t)+1)) = Mﬂ).a(t)w = "(2 2 i p-atr
Solving the above equation results in @ = 2r/(1 — Pry — 2p) where Pr, is a function
of p, r and dj, only.

The discussion above demonstrates that the two key parameters p and r of the
(modified) duplication model are determined by the degree distribution (more specif-
ically the slope of the degree distribution in the log-log scale) and the average degree
of the PPI network we would like to emulate. Perhaps due to the strong evidence that
the seed network does not have any effect on the asymptotic degree distribution [5],
the role of the seed network (the only free parameter remaining) in determining other
topological features of the duplication model has not been investigated.

3 Measures for Comparing Networks

There are several topological features that can be used to test whether two networks
are similar or not, starting at very rigorous measures like isomorphism, to very relaxed
characteristics like the degree distribution. In this paper we focus on five such proper-
ties, namely the degree distribution, the k-hop reachability, the graphlet frequency, the
betweenness distribution and the closeness distribution.
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Isomorphy. Two networks G and G’ are called isomorphic if there exists a bijective
mapping F' from each node of G to a distinct node in G’, such that two nodes v and w
are connected in G if and only if F(v) and F(w) are connected. G and G’ are called
approximately isomorphic if by removing a “small” number of nodes and edges from
G and G’ they could be made isomorphic. Ideally, a random graph model that aims to
emulate the growth of a PPI network should produce a network that is approximately
isomorphic to the PPI network under investigation. Unfortunately there is no known
polynomial algorithm for testing whether two networks are (exactly or approximately)
isomorphic or not.

k-hop reachability. Let V(i) denote the set of nodes in V' whose degree is i. Given
a node v, denote by d(v, k) its k-hop degree, i.e., the number of distinct nodes it can
reach in < k hops. Now we define f(3, k), the k-hop reachability of V (i) as

o1 w
f(z,k)——lv(i)l > d(w,k).

weV,d(w)=1

Thus f(i, k) is the “average” number of distinct nodes a node with degree i can reach
in k hops; e.g. f(i,1) = ¢ by definition.

Graphlet frequency. The graphlet frequency was introduced in [16] to compare the
topological structure of networks. A graphlet is a small connected and induced subgraph
of a large graph, for example a small triangle or a small clique. The graphlet count of
a given graphlet g with  nodes in a given graph G = (V, E) is defined as the number
of distinct subsets of V' (with r nodes) whose induced subgraphs in G are isomorphic
to g. In this paper we consider all 141 possible graphlets/subgraph topologies with
3,4,5,6 nodes. Additionally, we consider cliques of sizes 7,8,9,10. We enumerate
these graphlets as shown in Figure 6.

Betweenness distribution. The betweenness of a fixed node of a network measures the
extend to which a particular point lies *between’ point pairs in the network G = (V, E).
The formal definition of betweenness is as follows. Let o, ,, be the number of shortest
path fromz € V toy € V for all pairs 2,y € V. (Note that 0, , = 0y . in undirected
graphs). Let 0, ,(v) be the number of shortest path from z € V to y € V which go
through node v. The betweenness Bet(v) of node v is now defined as follows.

Bet(v) = i3 (v)

iy
(L.)eVigrv Y

Closeness. For all z,y € V, we define d,  as the length of the shortest path between
z and y. The closeness of a node v € V is defined as

Vi-1

Cl =
S(v) Zzev dvvi
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4 Results and Discussion

As mentioned above, scale free network generators such as the preferential attachment
model and the duplication model can have very similar degree distributions under ap-
propriate choice of parameters. Moreover, the degree distribution of these models con-
verge to a power law degree distribution whose shape is determined solely by the edge
deletion and edge insertion probabilities and not by the initial “seed” graph [10]. Hence,
it has been tempting to assume that networks generated by these models are similar in
general and the effect of the seed graph in shaping the topologies of these networks has
largely been ignored in recent literature.

Unfortunately two networks with very similar degree distributions may have very
different topologies. For example, a network generated by the preferential attachment
and another generated by the duplication model may have very different k-hop reach-
ability, graphlet, betweenness and closeness distributions while having almost identi-
cal degree distributions (see Section A.1). Furthermore two networks generated by the
same duplication model (and hence have very similar degree distributions) can differ
substantially in terms of the above topological measures, if their seed networks are dif-
ferent (see Section A.2).

If the seed selection makes such a difference in shaping the topology of the gen-
erated network, is it possible to select the “right” seed network so that all interesting
topological features of the PPI networks in question can be captured? We answer this
question positively by demonstrating that carefully chosen seeds can result in a net-
work that is very similar to PPI networks we considered in terms of all of the above
distributions.

The PPI networks we tested include (the largest connected component of) the com-
plete Yeast PPI network [20] with 4902 proteins and 17200 edges (as of Jul 2006). We
also tested the more accurate but much smaller CORE Yeast network [11] and the lesser
developed Worm network [20] (see Section A.3).

The seed graph we used for capturing the Yeast PPI network basically has two highly
connected cliques of respectively 10 and 7 nodes. There are a few additional nodes
sparsely connected to the cliques in a random fashion (the total number of nodes was 50).
This ensured that the (normalized) degree distribution of the Yeast PPI network as well
as its clique frequency distribution (which turns out to be an important determinant of
the overall graphlet distribution) were similar to that of the seed graph.

There are two additional parameters associated with the duplication model: p, the
edge maintenance probability and r, the edge insertion probability. These two parame-
ters alone determine the (asymptotic) degree distribution and the average degree of the
generated network. We chose p = 0.365 and » = 0.12 so that the degree distribution
of the duplication model matches that of the Yeast PPI network (see Section 2.1 for the
exact mathematical expressions for p and r).

We used the duplication model to generate 4 independent networks each with 4902
vertices. The resulting networks are compared to the Yeast PPI network in terms of the
k-hop reachability, the graphlet , betweenness, and closeness distributions in Figure 1.

Under all these measures, the Yeast network is very similar to those produced by
the duplication model. In fact the duplication model we consider here provides much
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Fig. 1. The degree distribution, the k-hop reachability, the graphlet, closeness and betweenness
distributions of the Yeast PPI (Red) network against four independent runs of the duplication
model (Green)

better fits to both the k-hop degree distribution and the graphlet distribution of the Yeast
network than the random graph models described in of [5] and [16] - which were specif-
ically devised to capture the respective features of PPI networks.
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