All of

Nonparametric
Statistics

Larry Wasserman




0 15,7
CL (L

W77 Larry Wasserman

All of Nonparametric
Statistics

With 52 Illustrations

M

E200602371

@ Springer



Larry Wasserman

Department of Statistics
Carnegie Mellon University
Pittsburgh, PA 15213-3890

USA
larry@stat.cmu.edu

Editorial Board

George Casella
Department of Statistics
University of Florida
Gainesville, FL 32611-8545
USA

Stephen Fienberg
Department of Statistics
Carnegie Mellon University
Pittsburgh, PA 15213-3890
USA

Library of Congress Control Number: 2005925603

ISBN-10: 0-387-25145-6

ISBN-13: 978-0387-25145-5

Printed on acid-free paper.

© 2006 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the writ-
ten permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New
York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation, com-
puter software, or by similar or dissimilar methodology now known or hereafter developed is for-

bidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they
are subject to proprietary rights.

Printed in the United States of America.

987654321

springeronline.com

(MVY)

Ingram Olkin
Department of Statistics
Stanford University
Stanford, CA 94305
USA



Springer Texts in Statistics

Advisors:
George Casella Stephen Fienberg Ingram Olkin



Springer Texts in Statistics

Alfred: Elements of Statistics for the Life and Social Sciences

Berger: An Introduction to Probability and Stochastic Processes

Bilodeau and Brenner: Theory of Multivariate Statistics

Blom: Probability and Statistics: Theory and Applications

Brockwell and Davis: Introduction to Times Series and Forecasting, Second
Edition

Chow and Teicher: Probability Theory: Independence, Interchangeability,
Martingales, Third Edition

Christensen: Advanced Linear Modeling: Multivariate, Time Series, and
Spatial Data—Nonparametric Regression and Response Surface
Maximization, Second Edition

Christensen: Log-Linear Models and Logistic Regression, Second Edition

Christensen: Plane Answers to Complex Questions: The Theory of Linear
Models, Third Edition

Creighton: A First Course in Probability Models and Statistical Inference

Davis: Statistical Methods for the Analysis of Repeated Measurements

Dean and Voss: Design and Analysis of Experiments

du Toit, Steyn, and Stumpf: Graphical Exploratory Data Analysis

Durrett: Essentials of Stochastic Processes

Edwards: Introduction to Graphical Modelling, Second Edition

Finkelstein and Levin. Statistics for Lawyers

Flury: A First Course in Multivariate Statistics

Jobson: Applied Multivariate Data Analysis, Volume I: Regression and
Experimental Design

Jobson: Applied Multivariate Data Analysis, Volume II: Categorical and
Multivariate Methods

Kalbfleisch: Probability and Statistical Inference, Volume I: Probability,
Second Edition

Kalbfleisch: Probability and Statistical Inference, Volume II: Statistical
Inference, Second Edition

Karr: Probability

Keyfitz: Applied Mathematical Demography, Second Edition

Kiefer: Introduction to Statistical Inference

Kokoska and Nevison: Statistical Tables and Formulae

Kulkarni: Modeling, Analysis, Design, and Control of Stochastic Systems

Lange: Applied Probability

Lehmann: Elements of Large-Sample Theory

Lehmann: Testing Statistical Hypotheses, Second Edition

Lehmann and Casella: Theory of Point Estimation, Second Edition

Lindman. Analysis of Variance in Experimental Design

Lindsey. Applying Generalized Linear Models

(continued after index)



To Isa



Pretace

There are many books on various aspects of nonparametric inference such
as density estimation, nonparametric regression, bootstrapping, and wavelets
methods. But it is hard to find all these topics covered in one place. The goal
of this text is to provide readers with a single book where they can find a
brief account of many of the modern topics in nonparametric inference.

The book is aimed at master’s-level or Ph.D.-level statistics and computer
science students. It is also suitable for researchers in statistics, machine learn-
ing and data mining who want to get up to speed quickly on modern non-
parametric methods. My goal is to quickly acquaint the reader with the basic
concepts in many areas rather than tackling any one topic in great detail. In
the interest of covering a wide range of topics, while keeping the book short,
I have opted to omit most proofs. Bibliographic remarks point the reader to
references that contain further details. Of course, I have had to choose topics
to include and to omit, the title notwithstanding. For the most part, I decided
to omit topics that are too big to cover in one chapter. For example, I do not
cover classification or nonparametric Bayesian inference.

The book developed from my lecture notes for a half-semester (20 hours)
course populated mainly by master’s-level students. For Ph.D.-level students,
the instructor may want to cover some of the material in more depth and
require the students to fill in proofs of some of the theorems. Throughout, I
have attempted to follow one basic principle: never give an estimator without
giving a confidence set.



viii Preface

The book has a mixture of methods and theory. The material is meant
to complement more method-oriented texts such as Hastie et al. (2001) and
Ruppert et al. (2003).

After the Introduction in Chapter 1, Chapters 2 and 3 cover topics related to
the empirical CDF such as the nonparametric delta method and the bootstrap.
Chapters 4 to 6 cover basic smoothing methods. Chapters 7 to 9 have a higher
theoretical content and are more demanding. The theory in Chapter 7 lays the
foundation for the orthogonal function methods in Chapters 8 and 9. Chapter
10 surveys some of the omitted topics.

I assume that the reader has had a course in mathematical statistics such
as Casella and Berger (2002) or Wasserman (2004). In particular, I assume
that the following concepts are familiar to the reader: distribution functions,
convergence in probability, convergence in distribution, almost sure conver-
gence, likelihood functions, maximum likelihood, confidence intervals, the
delta method, bias, mean squared error, and Bayes estimators. These back-
ground concepts are reviewed briefly in Chapter 1.

Data sets and code can be found at:

www.stat.cmu.edu/~larry/all-of-nonpar

I need to make some disclaimers. First, the topics in this book fall under
the rubric of “modern nonparametrics.” The omission of traditional methods
such as rank tests and so on is not intended to belittle their importance. Sec-
ond, I make heavy use of large-sample methods. This is partly because I think
that statistics is, largely, most successful and useful in large-sample situations,
and partly because it is often easier to construct large-sample, nonparamet-
ric methods. The reader should be aware that large-sample methods can, of
course, go awry when used without appropriate caution.

I would like to thank the following people for providing feedback and sugges-
tions: Larry Brown, Ed George, John Lafferty, Feng Liang, Catherine Loader,
Jiayang Sun, and Rob Tibshirani. Special thanks to some readers who pro-
vided very detailed comments: Taeryon Choi, Nils Hjort, Woncheol Jang,
Chris Jones, Javier Rojo, David Scott, and one anonymous reader. Thanks
also go to my colleague Chris Genovese for lots of advice and for writing the
KTEX macros for the layout of the book. I am indebted to John Kimmel,
who has been supportive and helpful and did not rebel against the crazy title.
Finally, thanks to my wife Isabella Verdinelli for suggestions that improved
the book and for her love and support.

Larry Wasserman
Pittsburgh, Pennsylvania
July 2005
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1

Introduction

In this chapter we briefly describe the types of problems with which we will
be concerned. Then we define some notation and review some basic concepts

from probability theory and statistical inference.

1.1 What Is Nonparametric Inference?

The basic idea of nonparametric inference is to use data to infer an unknown
quantity while making as few assumptions as possible. Usually, this means
using statistical models that are infinite-dimensional. Indeed, a better name
for nonparametric inference might be infinite-dimensional inference. But it is
difficult to give a precise definition of nonparametric inference, and if I did
venture to give one, no doubt I would be barraged with dissenting opinions.

For the purposes of this book, we will use the phrase nonparametric in-
ference to refer to a set of modern statistical methods that aim to keep the
number of underlying assumptions as weak as possible. Specifically, we will
consider the following problems:

1. (Estimating the distribution function). Given an 11D sample X1,..., X, ~
F, estimate the CDF F(z) = P(X < z). (Chapter 2.)
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2. (Estimating functionals). Given an 1ID sample X1,..., X, ~ F, estimate
a functional T'(F) such as the mean T'(F) = [z dF(z). (Chapters 2
and 3.)

3. (Density estimation). Given an 11D sample X3, ..., X, ~ F, estimate the
density f(z) = F’(z). (Chapters 4, 6 and 8.)

4. (Nonparametric regression or curve estimation). Given (X1,Y1),..., (X,,Yy)
estimate the regression function r(z) = E(Y|X = z). (Chapters 4, 5, 8
and 9.)

5. (Normal means). Given Y; ~ N(6;,0%), i = 1,...,n, estimate § =
(61,...,6,). This apparently simple problem turns out to be very com-
plex and provides a unifying basis for much of nonparametric inference.
(Chapter 7.)

In addition, we will discuss some unifying theoretical principles in Chapter
7. We consider a few miscellaneous problems in Chapter 10, such as measure-
ment error, inverse problems and testing.

Typically, we will assume that distribution F' (or density f or regression
function r) lies in some large set § called a statistical model. For example,
when estimating a density f, we might assume that

res={o: [6@yraes 3

which is the set of densities that are not “too wiggly.”

1.2 Notation and Background

Here is a summary of some useful notation and background. See also
Table 1.1.

Let a(x) be a function of z and let F be a cumulative distribution function.
If F is absolutely continuous, let f denote its density. If F is discrete, let f
denote instead its probability mass function. The mean of a is

Ja(z)f(z)dz  continuous case

>-ja(zj)f(x;) discrete case.

E(a(X)) = /a(z)dF(x) = {

Let V(X) = E(X — E(X))? denote the variance of a random variable. If
X1,..., Xy are n observations, then fa(x)dﬁn(z) =n"1Y, a(X;) where F,
is the empirical distribution that puts mass 1/n at each observation X;.
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Symbol Definition
Zn = 0(an) limp oo Tpfon =10
zn = O(an) |Tn/an|is bounded for all large n

an ~ bn an/bp — 1l asn — 00

an < bn @n /by and by /a, are bounded for all large n
Xp~ X convergence in distribution

X n—P—> X convergence in probability

X, 22X almost sure convergence

0, estimator of parameter 6

bias E(0,) — 0

se \/V(@\n) (standard error)

se estimated standard error

MSE ]E(gn — )2 (mean squared error)

i} CDF of a standard Normal random variable
Za o 11— a)

TABLE 1.1. Some useful notation.

Brief Review of Probability. The sample space Q is the set of possible
outcomes of an experiment. Subsets of ( are called events. A class of events
A is called a o-field if (i) 0 € A, (ii) A € A implies that A° € A and (iii)
Ay, As,..., € A implies that [J;°; A; € A. A probability measure is a
function P defined on a o-field A such that P(4) >0 for all A€ A, P(Q2) =1
and if A1, Ag, ... € A are disjoint then

]P’(Q A,—) = gP(Ai).

The triple (€2, .4, P) is called a probability space. A random variable is a
map X : Q — R such that, for every real z, {w € Q: X(w) <z} € A.

A sequence of random variables X, converges in distribution (or con-
verges weakly) to a random variable X, written Xy ~» X, if

P(X, <z)—-PX <xz) (1.1)
as n — oo, at all points z at which the CDF
F(z) =P(X < x) (1.2)

is continuous. A sequence of random variables X,, converges in probability
to a random variable X, written Xn—P~> X, if,

for every € >0, P(|X,—X|>¢€)—0 asn—oo. (1.3)
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A sequence of random variables X,, converges almost surely to a random
variable X, written X, > X, if

P( lim |X, — X|=0)=1. (1.4)
The following implications hold:
X,2% X implies that X, — X implies that X, ~» X. (1.5)

Let g be a continuous function. Then, according to the continuous map-
ping theorem,

Xn ~ X  implies that  ¢(X,) ~ g(X)
X,—>X implies that g(X,)— g(X)
X, 2% X  implies that  g(X,)=% g(X)

According to Slutsky’s theorem, if X,, ~» X and Y,, ~ ¢ for some constant
¢, then X, +Y, ~» X +cand X,Y, ~ cX.

Let X3, ..., X, ~ F be 11D. The weak law of large numbers says that if
E|g(X1)| < oo, then n=t 37" | g(Xi)LIE(g(Xl)). The strong law of large
numbers says that if E|g(X1)| < oo, then n™1 37" | ¢(X;) 25 E(g(X)1)).

The random variable Z has a standard Normal distribution if it has density
¢(2) = (2m)"1/2¢7%"/2 and we write Z ~ N(0,1). The cDF is denoted by
®(z). The « upper quantile is denoted by z,. Thus, if Z ~ N(0,1), then
P(Z > z,) = a.

If E(9%(X1)) < oo, the central limit theorem says that

VAT — 1) ~ N(0,0%) (1.6)
where Y; = g(X;), p =E(Y1), Y, =n"'3 | ¥; and 02 = V(V7). In general,
if

En =), N0, 1)
On
then we will write
X &~ N(u,52). (1.7)

According to the delta method, if g is differentiable at p and ¢’(u) # 0
then

Vn(Xn—p) ~ N(0,0%) = vn(g9(Xa) —g(1)) ~ N(0, (g'(1))%0?). (1.8)

A similar result holds in the vector case. Suppose that X, is a sequence of
random vectors such that /n(X, — u) ~ N(0,%), a multivariate, mean 0
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normal with covariance matrix ¥. Let g be differentiable with gradient Vg
such that V, # 0 where V, is Vg evaluated at u. Then

Vilg(X) = o) ~ N (0.VE29, ). (1.9)

Statistical Concepts. Let § = {f(z;0) : 6 € ©} be a parametric model
satisfying appropriate regularity conditions. The likelihood function based
on IID observations X1,..., X, is

L (0) =[] £(X:;0)
=1

and the log-likelihood function is £, (0) = log £, (6). The maximum likeli-
hood estimator, or MLE é\n, is the value of § that maximizes the likelihood. The
score function is s(X;60) = dlog f(x;6)/06. Under appropriate regularity
conditions, the score function satisfies Eq(s(X;6)) = [ s(z;0)f(z;0)dz = 0.
Also,

V(B — 6) ~> N(0,7%(9))

where 72(0) = 1/I(6) and

I1(0) = Vo(s(;0)) = Eo(s*(z;6)) = —Eo

02 log f(x;0)
(=5%)

is the Fisher information. Also,

(6 — 6)
P N(O, 1)

where §&° = 1/(nl ((9\”)) The Fisher information I,, from n observations sat-
isfies I, (0) = nI(6); hence we may also write s&° = 1/(In(§n))

The bias of an estimator @l is ]E(é\) — 6 and the the mean squared error MSE
is MSE = E(§ — 0)2. The bias—variance decomposition for the MSE of an

estimator é\n is
MSE = bias?(8,,) + V(6,). (1.10)

1.3 Confidence Sets

Much of nonparametric inference is devoted to finding an estimator gn of
some quantity of interest 6. Here, for example, 6 could be a mean, a density
or a regression function. But we also want to provide confidence sets for these
quantities. There are different types of confidence sets, as we now explain.



