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Preface

What is combinatorial optimization? There are, in my opinion, as many
definitions as there are researchers in this domain, each one as valid as the other. For
me, it is above all the art of understanding a real, natural problem, and being able to
transform it into a mathematical model. It is the art of studying this model in order
to extract its structural properties and the characteristics of the solutions of the
modeled problem. It is the art of exploiting these characteristics in order to
determine algorithms that calculate the solutions but also to show the limits in
economy and efficiency of these algorithms. Lastly, it is the art of enriching or
abstracting existing models in order to increase their strength, portability, and ability
to describe mathematically (and computationally) other problems, which may or
may not be similar to the problems that inspired the initial models.

Seen in this light, we can easily understand why combinatorial optimization is at
the heart of the junction of scientific disciplines as rich and different as theoretical
computer science, pure and applied, discrete and continuous mathematics,
mathematical economics, and quantitative management. It is inspired by these, and
enriches them all.

This book, Concepts of Combinatorial Optimization, is the first volume in a set
entitled Combinatorial Optimization. It tries, along with the other volumes in the set,
to embody the idea of combinatorial optimization. The subjects of this volume cover
themes that are considered to constitute the hard core of combinatorial optimization.
The book is divided into three parts:

— Part I: Complexity of Combinatorial Optimization Problems;
— Part II: Classical Solution Methods;

— Part III: Elements from Mathematical Programming.
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In the first part, Chapter 1 introduces the fundamentals of the theory of
(deterministic) complexity and of algorithm analysis. In Chapter 2, the context
changes and we consider algorithms that make decisions by “tossing a coin”. At
each stage of the resolution of a problem, several alternatives have to be considered,
each one occurring with a certain probability. This is the context of probabilistic (or
randomized) algorithms, which is described in this chapter.

In the second part some methods are introduced that make up the great classics
of combinatorial optimization: branch-and-bound and dynamic programming. The
former is perhaps the most well known and the most popular when we try to find an
optimal solution to a difficult combinatorial optimization problem. Chapter 3 gives a
thorough overview of this method as well as of some of the most well-known tree
search methods based upon branch-and-bound. What can we say about dynamic
programming, presented in Chapter 4? It has considerable reach and scope, and very
many optimization problems have optimal solution algorithms that use it as their
central method.

The third part is centered around mathematical programming, considered to be
the heart of combinatorial optimization and operational research. In Chapter 5, a
large number of linear models and an equally large number of combinatorial
optimization problems are set out and discussed. In Chapter 6, the main simplex
algorithms for linear programming, such as the primal simplex algorithm, the dual
simplex algorithm, and the primal-dual simplex algorithm are introduced. Chapter 7
introduces some classical linear programming methods, while Chapter 8 introduces
quadratic integer optimization methods. Chapter 9 describes a series of resolution
methods currently widely in use, namely column generation. Chapter 10 focuses on
polyhedral methods, almost 60 years old but still relevant to combinatorial
optimization research. Lastly, Chapter 11 introduces a more contemporary, but
extremely interesting, subject, namely constraint programming.

This book is intended for novice researchers, or even Master’s students, as much
as for senior researchers. Master’s students will probably need a little basic
knowledge of graph theory and mathematical (especially linear) programming to be
able to read the book comfortably, even though the authors have been careful to give
definitions of all the concepts they use in their chapters. In any case, to improve
their knowledge of graph theory, readers are invited to consult a great, flagship book
from one of our gurus, Claude Berge: Graphs and Hypergraphs, North Holland,
1973. For linear programming, there is a multitude of good books that the reader
could consult, for example V. Chvatal, Linear Programming, W .H. Freeman, 1983,
or M. Minoux, Programmation mathématique: théorie et algorithmes, Dunod, 1983.

Editing this book has been an exciting adventure, and all my thanks go, firstly, to
the authors who, despite their many responsibilities and commitments (which is the
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lot of any university academic), have agreed to participate in the book by writing
chapters in their areas of expertise and, at the same time, to take part in a very tricky
exercise: writing chapters that are both educational and high-level science at the
same time.

This work could never have come into being without the original proposal of
Jean-Charles Pomerol, Vice President of the scientific committee at Hermes, and
Sami Ménascé and Raphaél Ménascé, the heads of publications at ISTE. I give my
warmest thanks to them for their insistence and encouragement. It is a pleasure to
work with them as well as with Rupert Heywood, who has ingeniously translated the
material in this book from the original French.

Vangelis Th. PASCHOS
June 2010
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Chapter 1

Basic Concepts in Algorithms
and Complexity Theory

1.1. Algorithmic complexity

In algorithmic theory, a problem is a general question to which we wish to find an
answer. This question usually has parameters or variables the values of which have
yet to be determined. A problem is posed by giving a list of these parameters as well
as the properties to which the answer must conform. An instance of a problem is
obtained by giving explicit values to each of the parameters of the instanced problem.

An algorithm is a sequence of elementary operations (variable affectation, tests,
forks, etc.) that, when given an instance of a problem as input, gives the solution of
this problem as output after execution of the final operation.

The two most important parameters for measuring the quality of an algorithm are:
its execution time and the memory space that it uses. The first parameter is expressed
in terms of the number of instructions necessary to run the algorithm. The use of the
number of instructions as a unit of time is justified by the fact that the same program
will use the same number of instructions on two different machines but the time taken
will vary, depending on the respective speeds of the machines. We generally consider
that an instruction equates to an elementary operation, for example an assignment, a
test, an addition, a multiplication, a trace, etc. What we call the complexity in time or
simply the complexity of an algorithm gives us an indication of the time it will take to
solve a problem of a given size. In reality this is a function that associates an order of

Chapter written by Vangelis Th. PASCHOS.



