INTRODUCTION TO

OPERATIONS

RESEARCH

p

ST

JOSEPH G. ECKER 4 MICHAEL KUPFERSCHMID



™Y
oy

8864263

INTRODUCTION
TO
OPERATIONS
RESEARCH

JOSEPH G. ECKER
MICHAEL KUPFERSCHMID

Rensselaer Polytechnic Institute

E8864263

JOHN WILEY & SONS

NEW YORK CHICHESTER
BRISBANE TORONTO SINGAPORE




Copyright © 1988, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.
Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright

Act without the permission of the copyright

owner is unlawful. Requests for permission

or further information should be addressed to

the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data
Ecker, Joseph G.
Introduction to operations research.
Includes bibliographies and indexes.
1. Operations research. I. Kupferschmid, Michael.
II. Title.
T57.6.E33 1988 658.4'03'4 87-23147
ISBN 0-471-88445-6
Printed in the United States of America
10 9 87 65 43 21



INTRODUCTION
TO
OPERATIONS
RESEARCH



To Juanita and to
Kelly and Steve

To Gail



ABOUT THE
AUTHORS

Josern 6. ECKER is Professor and Chairman of the Department of Mathe-
matical Sciences at Rensselaer Polytechnic Institute in Troy, New York. All of
his degrees were received from the University of Michigan—a B.A. in mathe-
matics in 1964, an M.S. in mathematics in 1966, and a Ph.D. in mathematics in
1968. Dr. Ecker has been a faculty member at RPI since 1968 and teaches a
variety of courses in operations research and mathematics. He is also an affiliated
faculty member in RPI’s Department of Decision Sciences and Engineering
Systems. In 1975 he was awarded a Fulbright-Hays Research Award and a
NATO Postdoctoral Fellowship in Science, and spent the year as a visiting
professor in the Center for Operations Research and Econometrics at the Cath-
olic University of Louvain in Belgium. In 1983 he was a visiting professor in the
mathematics department of the Ecole Polytechnique Fédérale de Lausanne in
Switzerland. His research interests are in operations research and include the
theory and applications of linear and nonlinear programming, multiple objective
programming, geometric programming, and algorithm development. He is the
author or coauthor of more than 45 research publications and is a consultant
for several major corporations. Dr. Ecker has been an associate editor of Op-
erations Research and is currently an editor of SIAM Review.

MicuacL KUPFERSCHMID is a computing consultant in the Information Tech-
nology Services Department at Rensselaer Polytechnic Institute and an adjunct
faculty member in RPI's Department of Decision Sciences and Engineering
Systems. He received a B.S. in electrical engineering from RPI in 1968 and

Vil



Vili ABOUT THE AUTHORS

worked for the next three years at Sikorsky Aircraft designing and flight testing
helicopter autopilots. After returning to RPI for a Master of Engineering degree,
which was awarded in 1972, he studied theatre engineering at the Yale School
of Drama and worked for six more years in industry as a control systems engineer.
In 1978 he resigned his position as design supervisor for the controls division of
the J. R. Clancy Company and returned to RPI for graduate work in operations
research and statistics, leading to a M.S. in 1980 and a Ph.D. in 1981. Dr.
Kupferschmid has taught courses in operations research and in computing at
RPI and is an author of seven research papers. His research interests are in the
experimental evaluation of algorithm performance, the development of nonlin-
ear optimization methods, and the applications of mathematical programming.
Dr. Kupferschmid is a registered Professional Engineer.



PREFACE

This textbook is intended for use in a two-semester sequence of courses intro-
ducing the mathematical methods of operations research. Part I can also be used
alone for a one-semester course on linear programming. We have chosen to
provide deep and thorough coverage of the most important methods in opera-
tions research rather than a superficial treatment of a larger number of topics.
The level of exposition is appropriate for juniors and seniors who are majoring
in engineering, computer science, mathematics, and quantitative methods in
management.

The basic techniques of operations research are simple and straightforward,
and only a small amount of advanced mathematics is needed for a technically
accurate introduction to the subject. This textbook assumes a knowledge of high
school elementary algebra and a familiarity with simple matrix notation such as
would be introduced in the first class of an undergraduate linear algebra course.
In addition, Chapters 9 and 10 assume a knowledge of elementary differential
calculus, and Part III assumes a knowledge of elementary probability and sta-
tistics. A concise appendix on matrix notation makes the book accessible to
students who have not previously had any linear algebra.

Both the style of exposition and the mathematical notation have been chosen
to reflect the simplicity of the subject, and the readability of the text is considered
more important than rigor. Examples are used extensively to introduce and
motivate the topics. In this way, the presentation reflects the inductive process
of scientific discovery rather than imitating the retrospective deduction that is
typical in research papers. This approach gives the student the opportunity to
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rediscover the important results personally instead of merely reading about them
in theorems. Proofs are given for some results, but only after the result has been
illustrated by example, and only when the proof provides a constructive method
for solving problems. Thus the book is not a treatise on mathematical theory.

The simplicity of the methods used in the book means that they can be
deeply understood even by beginning students of the subject, and the treatment
is mathematically precise even though the results are often stated informally.
Thus the discussion is not a cookbook tabulation of trite formulae, and the
student should reasonably be expected to understand the mathematical basis for
the techniques in addition to being able to apply them.

Answers to selected exercises are given at the end of the book, and a
separate answer book is available that contains complete solutions to all of the
exercises.

The development of this text benefited greatly from the comments and
suggestions made by our colleagues during its use in preliminary form over the
past four years. In particular, we express our gratitude to Professors Carlton E.
Lemke (Rensselaer Polytechnic Institute), Richard T. Wong (Purdue Univer-
sity), and Thomas M. Liebling (Ecole Polytechnique Fédérale de Lausanne).
We also thank the many RPI students who used the preliminary versions, proof-
read the text, and tested out: the exércises. Special thanks are due to Richard
Sych, Lori Grieb, Laura Ripans, Carla Bryan, and Robert Bosch.

Joseph G. Ecker
Michael Kupferschmid
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CHAPTER 1

INTRODUCTION

During World War II, the U.S. Army Air Corps suffered many casualties in
the course of flying strategic bombing missions over Nazi Germany. An anecdote
about that era concerns a study conducted to determine how to reduce those
horrible losses. Army B-17 aircraft were examined for holes made by bullets
and flak during bombing missions, and the location of each hole was marked
on an outline drawing of a B-17. When all of the holes had been marked, it was
clear that some parts of a B-17 were much more likely to suffer battle damage
than others. The general in charge of the study convened a briefing of military
planners to propose that the most heavily damaged areas be provided with
additional armor plating. Finding the best places to put the extra armor was
very important because only a small amount of weight could be added to the
airplanes. At the conclusion of the briefing, after many of those in attendance
had agreed to the soundness of the plan, a junior officer in the back of the room
timidly raised his hand and was recognized to speak. Clearing his throat nerv-
ously, the lieutenant asked in a small voice if it might not be better to armor
the parts of the airplane showing the fewest holes rather than the parts with the
most severe damage. “After all,” he pointed out, “the airplanes that you meas-
ured the holes in are the ones that came back.”

1.1 OPERATIONS RESEARCH

The preceding story is probably apocryphal, but the question of where to
put the armor has many features that are typical of problems in operations
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