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PREFACE =

of optimal dynamic systems and for independent study by engineers and
applied mathematicians. The book presumes some knowledge of calculus,
ordinary differential equations, and matrix algebra.

We will be studying the set of all control functions that satisfy the
Pontryagin maximum principle. It is proved that, even in the most general
case, this set, which also potentially contains the optimal control, can be
substantially contracted. For this purpose, we prove a number of theorems
that may be used to split the maximally feasible control set into nested
classes according to oscillation criteria. An easily checked criterion makes it
possible to simplify the computations substantially, even prior to computing
the control. The linear theory of optimal processes developed by R. V.
Gamkrelidze is shown to be a logical consequence of the oscillation theory
presented here.

The monograph grew out of results that were first obtained in 1971-1977
and integrated as a theory in 1979. The present book includes additional
material proved in 1980-1983, which essentially doubled the size of the
original work. The book includes all the theorems necessary for the analysis,
along with a large number of examples that illustrate, step by step, how to
solve specific problems.

I wish to express my appreciation to Robert H. Silverman for his faithful
translation of the original version of the manuscript (1980) and his careful
editing of the expanded English version (1983). My greatest thanks go to my
wife for the suggestions she made for improving the readability of the
original version and for encouragement and support during the preparation
of this book.

GEORGE M. SMIRNOV

Boston, Massachusetts
April 1984
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INTRODUCTION

Music, music before all things

Uneven rhythm suits it well

In air more vague and soluble

With nothing there that weighs or clings.

Paul Verlain, “The Art of Poetry”

In any area of human activity, we are constantly forced to select the best of
a set of possible strategies, given particular conditions. In the present book
we will be considering controllable processes that may be described by
differential equations. The calculus of variations, a branch of mathematics
with a history of over two hundred years, was the first mathematical tool
used to solve optimal-control problems for such processes. However, even
the earliest attempts to apply classical methods from the calculus of
variations to contemporary practical problems faced major difficulties, since
certain features of these problems could not be easily expressed in the
classical formulation.

This fact led researchers to search for new techniques for solving practi-
cal problems. Two major results, both achieved in the 1950s, were Pontrya-
gin’s maximum principle and Bellman’s dynamic-programming method.
Together, they produced an interpretation of contemporary problems so
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distinct from that ordinarily encountered in the classical interpretation as to
point to the emergence of a new branch of modern mathematics: optimal-
control theory. This discipline now encompasses a rather large number of
results.

Even though the development of optimal-control theory seems nearly
complete, the actual process of solving particular problems often presents
major difficulties. Though a number of more or less satisfactory solution
algorithms for linear optimization problems are now available, there are
only a few nonlinear problems that can be said to have been completely
solved. Considerable difficulty may be created by special features concealed
in certain practical problems (e.g, a solution that satisfies necessary optimal-
ity conditions may turn out to be nonunique, a designated class of feasible
controls may lack an optimal control, and so on). Thus the development of
special approaches is called for.

In the present book, a classification of controls is proposed. For each
class of controls, we state conditions under which the optimal control
belongs to it. The system of classes is practically complete, that is, practi-
cally any system trajectory may be placed in a particular class. Conversely,
in each class the set of controls that satisfy the conditions of the maximum
principle can be described as a p-parameter family of functions with p a
pre-assigned finite or infinite number. The results yield general numerical
procedures for solving boundary-value problems associated with the opti-
mal-control problem for nonlinear systems. In many instances, only a few
parameters are needed ( p is small). Moreover, the phase space of the system
can often be partitioned into domains, in each of which the number of
parameters is constant. The initial controlled system can then be split into a
series of systems, each with its own domain. This classification of controls is
based on an analysis of the oscillatory properties of functions generated by
the necessary optimality conditions of Pontryagin’s maximum principle;
hence our title.

The book consists of five chapters. The first chapter contains a descrip-
tion of the optimal-control problem we will be studying and a statement of
the basic problem of oscillation theory presented in the book. The second
chapter describes existing approaches to the analysis of /inear systems based
on concepts similar to oscillation theory. The third chapter presents oscilla-
tion criteria by means of which it is possible to prove theorems that supply a
unique definition of an optimal control on the basis of the maximum
principle, and also presents techniques for singular-control analysis. The
fourth chapter extends the concept of an oscillation criterion to include
nonsingular extremals with p corner points. In the fifth chapter may be
found a presentation and evaluation of techniques for computing an opti-
mal control using the analysis given in Chapters 3 and 4. Examples are
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provided throughout the book to illustrate the basic results. For the reader’s
convenience, we present below a list of these examples.

Example 1:
Sec.
Example 2:
Sec.
Example 3:
Sec.
Example 4:
Sec.
Example 4:
Sec.
Example 7:
Sec.
Example 8:
Sec.
Example 9:
tion
Sec

Example 10:

Diesel electric propulsion plant
1.1, 3.2, 3.3,35

Reservoir with integrating power unit at the inlet
1.1,1.2,33,41

Linear system 1
22,23

Linear system 2
23,24

Linear system 3
23,24

Controlling the level of material in a jaw breaker
34

Parallel connection of cylindrical reservoirs
34

Control of the manufacturing process of wastepaper separa-

34
: Cylindrical reservoir with integrating power unit at the inlet

and inertialess mechanism at the outlet

Sec

s 3.9

Example 11: Reservoir with inertialess power unit at the inlet and
integrating power unit at the outlet

Sec

Example 12:
Sec.
Example 13:
Sec.
Example 14:
Sec.
Example 15:
Sec.
Example 16:
Sec.

Example 17:
Sec.

.35

Heater with two control actions

35

Joint operation of two ball mills with classifiers
41

Linear inertial unit with butterfly valve
41

Reservoir with controlled outflow

41, 4.6

Grab reloader

44

Simple single-frequency glycolysis model
44



= CHAPTER ONE -

OSCILLATION
CRITERIA
IN THE THEORY OF
OPTIMAL PROCESSES

mr youse needn’t be so spry
concernin questions arty

each has his tastes but as for i
i likes a certain party

€. €. cummings

The present chapter may serve as an introduction to and link between the
necessary optimality conditions of the maximum principle on the one hand,
and the notion of oscillation criteria on the other. Everywhere below we will
be considering the traditional statement of the optimal control problem and
well-known results achieved with the maximum principle. The problem and
its solution are outlined in the first part of this chapter and referred to
throughout the book as the optimal-control problem. The second part of this
chapter contains a general discussion of our central topic and states the
basic problem of oscillation theory.
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1.1. THE OPTIMAL-CONTROL PROBLEM AND THE
MAXIMUM PRINCIPLE

Let us consider a controllable process that may be described by a system of
differential vector equations of the form

%=f(x,u), x(t)) = xg, x(#;) = x,. (1)

Here x = {x,;, x,,...,X,} is a vector that describes the state of the control-
lable process. The positions of the controls are determined by the control
vector u = {u,, u,,...,u,}. The vector function f = { f*, f2,...,f"} defines
the rate of variation of the state vector x.

Suppose that the scalar function

J = f “£0(x,u) dt, (2)

defined by means of trajectories of the system (1) of differential equations, is
to be minimized over the class D, of measurable -dimensional functions
u(?), ty < t < t;, with values taken from the set V. The moments ¢, and 7,
are considered fixed. [The control set V' can be represented by a compact
convex polyhedron (see Fig. 1) in many applications, though most of the
theorems in this book do not specifically require it.]

Uz

uy

Fig. 1. Compact convex polyhedron V.
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In the Pontryagin maximum principle [1], D,,,, is called a class of feasible
controls. Tt is assumed here that the functions f°(x, ), f1(x,u),...,f"(x,u)
are continuous together with their partial derivatives with respect to x.

The solution of the optimal control problem is provided by the control u(t)
(called the optimal control) and the trajectory x(t) of the system (1) corre-
sponding to u(t) (called the optimal trajectory) that minimize the functional

).

The controllable process discussed above is given in automatic-control
theory as shown in Fig. 2. The quantities u,,...,u, (control parameters) are
frequently called input variables, and the quantities x,,...,x, (phase coordi-
nates or state variables) are termed output variables. The output J is defined
by the functional (2) and called an optimality criterion. The internal struc-
ture of the block in Fig. 2 is defined by the vector f and function f°.

Example 1: Diesel Electric Propulsion Plant

Let us consider the power circuit of a diesel electric propulsion plant [2] described
by a system of equations of the form

dx
_dTl = —ayx; + kyu— byx,,
3)
dx
Ez = ayx; = byx; = byx3,

where x; is the relative deviation of the speed of the diesel engine,
X, is the relative variation of the rate of rotation of the screw propeller, and
u is the relative deviation of the control rack. For the sake of simplicity, we

let Ju| < 1.
J
Uy —— #
Uy — —> X,
Uy — f,f° P> X3
— ——— —] 3 X3

ty ] e s e

Fig. 2. Input-output object flow chart.
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Suppose that we are interested in a control that provides minimal fuel consump-
tion. In this case, the optimality criterion (2) is given as

J=f"u2(t) dt 4)

The optimal control u(?) is the function that minimizes (4) and satisfies (3) when
t € [y, 4]

continued in Sec. 3.2

The existence of an optimal control for (1) and (2) has been discussed in
a number of well-known studies [3—-6]. However, it is not relevant to our
principal theme, and so will be set aside. We will study only those controls
that satisfy the necessary optimality conditions of the Pontryagin maximum
principle [1]. Since the maximum principle is the necessary condition for
optimality, the optimal control u(¢) belongs to the class of functions that
satisfy the following condition:

For any optimal control u(t), there exists a nonzero, continuous vector function

V(1) = {¥o(1), ¥1 (1), .9, (1)}

that satisfies, together with the optimal trajectory, a system of 2n + 2 differen-
tial equations

dx, 9 -

@ "y DO

dy AN .
=== 1=,

i

such that the function
= (Y(1),x(1),u) = Y(1) - f(x(r),u) = %%(t)f“(X(t),u)

of the variable w € V attains almost everywhere on the segment [t, t,] its
maximal value

H (V(2),x(1),u(2)) (=) M((1),x(1)) (6)

at the point w = u(t) (the sign (=) denotes equal almost everywhere), where

M (2)x(a)) = aup (4 (), x(e)s ). (7)
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In this case the following inequalities hold at the moment of time #;:

Yo(1) <0, M(x(1,),¥(1,)) = 0. (8)

Further, if the functions {(t), x(t), and u(t) satisfy the system (5) and
condition (6), the functions {,(t) and M(y(t),x(t)) of the variable t are
constant, so that the inequalities of (8) can be verified for any moment t,
ty <t < t,, and not just for the single moment t,.

Bear in mind that the functional (2) does not occur in the statement of
the maximum principle. Instead, there is a differential equation in the
system (5) that corresponds to the equation

‘—igtﬂ=f°(x,u), xo(2) =0, xo(1,) =J. (9)

This is why the system (5) is of dimension 2n + 2, and not 2n, as might be
expected. In the theory of differential equations, systems such as (5) are said
to be canonical, while the function 5 is called a Hamiltonian.

The process of finding an optimal control is usually interpreted as that of
mapping a control function u(¢) whose graph remains inside the control
polyhedron V (Fig. 3) onto a trajectory x(¢) = {x,(¢),...,x,(?)} in the
phase space, where the component x(¢) is minimal.

The feasible control u*, t € [¢,, #,], is said to be Pontryagin-extremal if it
satisfies, together with the corresponding functions x*(¢) and ¢ *(¢), the
maximum condition (6). Restating the maximum principle, we may say that
every optimal control is a Pontryagin extremal. The optimal-control problem
therefore reduces to finding the control in a set of Pontryagin extremals. If

-
b ) —— K
“ __—>  Eox(1) 4
»4\' / mmmr /
X1,
4 s x(t) CE,

Fig. 3. Mapping a control function u(7) onto the trajectory x(¢).
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an optimal control exists in some optimization problem, and if the
Pontryagin extremal is unique, it is also the optimal control.

Example 2: Reservoir with Integrating Power Unit at the Inlet
The object is described by the system of equations [7] (see Fig. 4)

55
dt

dx, 1
@~y
where x, is the fluid consumed,

X, is the fluid level, and
S is the design constant of the outlet.

=u,

(10)

The boundary conditions are t5 =0, x;9 = X =0, #; = #,,, X; = X3, and
X, = x5. The Hamiltonian and canonical system of equations (5) are as follows:

9‘”=1P0'1+4/1u+‘1’2'(xx—\/g)%

Xy = 1, X, =u, X, = (x1 - Jg) (11)

2l

Fig. 4. Reservoir with integrating power unit at the inlet.



