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This volume is the first of two planned to serve as a two-year course
in calculus and analytic geometry and to prepare the student to continue
to a standard, rigorous course in advanced calculus. The present volume
deals with the basic techniques and applications of differentiation and
integration, while its companion extends these topics and deals with series,
elements of differential equations, and an introduction to the differentia-
tion and integration of functions of several arguments.

We have written this book in the hope that it may help the students
who read it thoughtfully to obtain a real understanding of the basic struc-
ture, concepts, and techniques of the early parts of the calculus, and that
it may foster their ability to draw from these principles the methods of
attacking and solving those problems whose key lies in the calculus. Our
own students, at any rate, come to their first course in calculus for a
variety of reasons, ranging from desire for a background for the physical
sciences to a straight love affair with mathematics and the abstract, and
they come with a wide range of maturity in their understanding of algebra
and with different degrees of facility in technique. All these considera-
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vi PREFACE

tions have governed our plan to write them a four-semester text whose
beginning they could find understandable at their original level of mathe-
matical maturity and whose degree of rigor and sophistication would
grow with their ability to appreciate it.

We presuppose for the text a fairly fluent recall of algebra through
quadratics (which we test in the freshman orientation period) and a
semester’s worth of analytic trigonometry which has frittered away a
minimum of time measuring flagpoles and has concentrated on the funda-
mental identities and the solution of trigonometric equations.

The book is long and wordy — intentionally so. There are several
first-rate, concise, elegant texts on the calculus. For the sake of our own
students — and we hope for others also — we have tried to be more
detailed, more conversational. Particularly at the beginning we have first
introduced ideas intuitively, with scant care for rigor, but with an earnest
effort to make more straightforward and simple the transition from ele-
mentary courses to the calculus. This transition is hard enough at best,
moving as it does from courses where many problems can be done after
one pattern to one in which clear and full understanding of principles is
indispensable if a single mind is to handle all the welter of problems whose
solutions these principles make possible. We have found, for instance,
that the first chapter, with its intuitive, informal approach to the notion
of limit, has been most helpful in bridging the gap between high school
algebra and this new concept, and in avoiding the common misunder-
standings which seem to accompany early encounters with the derivative
as a limit.

But, though an idea may first be met informally and without probing,
it recurs throughout the text, each time more searchingly examined; for
we have tried to bring concepts bit by bit to a fully rigorous statement,
so far as time and the maturity of the student will allow. As the text
proceeds and the student becomes more of a mathematician, less preamble
is essential, but we still make an effort to throw as many lights as possible
on the growing structure. The student who finishes the book should be
easily able to cope with the rigors of a sound course in advanced calculus.

The book has not been written for a class composed only of brilliant
students; it aims at a group of all abilities, so long as they have true
mastery of the prerequisites we have mentioned. We have held to the
viewpoint that a course of formulas and problems, however rapidly it may
precipitate the student into advanced physics, runs counter to the main
purposes of seeing patterns of thought and understanding principles which
make possible the applications. Thus we have not spared the theory,
and we expect our students to know it — and be examined on it. (Accord-
ingly, for example, we proceed slowly with the early chapters on analytic
geometry where the proofs are simple and the instructor can make a point
of careful demonstration.) And this applies to the weaker as well as the
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stronger students. These latter may find explanations here which are
more detailed than they need; let them turn to the sections on ‘“Things
to Think About” at the ends of the chapters, which offer stronger meat.

These “Things to Think About” provide matter of supplementary
interest and sometimes of greater difficulty or subtlety, which the good
student may find interesting to mull over. Some are simple; some more
complex. Especially in the latter portions of the book, these sections
develop additional portions of theory which are not in the mainstream of
the course or which serve to link the present text to advanced calculus.
Witness, for example, the development of the theorem on integrability of
a continuous function in the “Things to Think About” for Chapter 13, or
the definition of the logarithmic function by an integral in Chapter 17.
While they are not intended as part of the formal course, nor for the use
of weaker students, they do furnish new and often significant insights for
the proficient.

How much about limits and continuity to bring in has, of course, been
a problem. e and §-methods are rather carefully discussed, not from the
very first page of the book — this seems to us unprofitably early — but
beginning after the student has had a chance to get his bearings in a new
land, and continuing with increasing emphasis throughout. Theorems on
limits and continuity are stated carefully when they are used, and in Vol-
ume II sample e- and é-proofs of limit theorems are given as a supplement
to a chapter on series, but there is no systematic development of these
topics. It has seemed to us that this should all be brought together
formally later, when the student who continues mathematical training
can grasp it in half the time.

Our especial thanks go to Professor Albert A. Bennett for a careful
reading of the manuscript and for a good many helpful suggestions for its
betterment, and to our recent colleagues in the department who have
given the book the benefit of their wisdom and experience in teaching it.
We must also thank our students who braved for several years the mimeo-
graphed form of the book, and who, perhaps stimulated by a reward of
$1 for each mathematical mistake they found, have been startlingly assid-
uous word-by-word readers. They have saved us quite a few dollars’
worth of boners; and, naturally, they are to blame for any that they have
been careless enough to leave undetected !

M. P. F.
R. B. S.
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INTRODUCTION:
INTUITIVE APPROACH TO LIMITS

I.I THE CALCULUS, ANALYTIC GEOMETRY, AND YOU

L. If a bullet is fired with a certain muzzle velocity into the
air at an angle, how far will it go? When will it be highest in
the air? How high will it be then? How fast is it traveling at
any particular time?

IL. If at a given time a satellite is traveling about the earth
in a certain direction and with a certain velocity, can we predict
the path along which it will travel thereafter?

I11. If the supporting cable of a suspension bridge hangs from
two supports, in what kind of curve will it hang? How high
will it be above the level of the bridge at any particular
point?

IV. If an observer has listening posts in safe territory,
how does he determine the position of an enemy gun by
observations of its sound made at those posts?

|



2 INTRODUCTION: INTUITIVE APPROACH TO LIMITS CHAP. |

V. Can a map of the earth be made on a piece of paper so that areas,
distances, directions, and scales may be completely preserved? If not,
which ones can be preserved on any given map? How can such a map be
constructed accurately ?

VI. What is the smallest amount of tin necessary to make a cylindrical
one-quart can? What dimensions will the can have?

VIL. The total cost of manufacturing a certain article is made up of:
(1) fixed costs of $1000 a day; (2) production cost of 22¢ per article; 3)
cost of repairs, etc., which is x?/5500 dollars per day, where x is the number
of articles produced per day. How many articles should be produced each
day to make the cost per unit the least?

VIII. If you wish to design a reflector for a headlight so that every ray
from the light will be reflected parallel to a given direction, how should you
shape the reflector?

IX. If the ends of a steel rail are fixed, but the rail increases in length
because of an increase in temperature, what is the maximum amount by
which the rail will buckle from its straight position if it buckles into an arc
of a parabola?

X. Where is the center of gravity of a hemisphere?

XI. How are the values in a table of logarithms found?

XII. If a gas expands in a cylinder, how much work is done by the
expanding gas?

XIII. How much oil is there in a given cylindrical tank which lies on its
side, if the depth of the oil is one-fourth of the diameter?

Here are some of the problems—a very random sample of them, by the
way, and far from representative of the whole variety—which can be faced
and answered with the help of the calculus and analytic geometry. We shall
find the answers to some of them in this course; others require more tech-
nique than this book can cover. Most of them will have to be phrased more
precisely before they are stated with enough accuracy to be answered.

Questions similar to these go back as far as Archimedes (third century
B.C.)or even further. The real answers did not come, however, until the 1600’s,
when Descartes took the decisive step which established analytic geometry,
and somewhat later Isaac Newton and Gottfried Leibniz, practically simul-
taneously though independently, hit upon the ideas which brought to ful-
filment the attempts of their predecessors and created the branches of
mathematics known as the differential and the integral calculus.

Most of the ideas involved in these subjects were not new. They still
dealt with numbers, geometric figures, and the techniques of algebra and
geometry. The chief major addition was a process called “taking the limit,”
with which we shall have much to do in the course of our work. The insight
of these men perceived methods of tying algebra, geometry, and the new
process together in ways that had not been thought of before. As with most



