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Preface

This combined textbook and laboratory manual is intended for a two-semester, intro-
ductory course at the community college or lower-division level; however, it should
also be of interest to individual experimenters and radio amateurs. The reader inter-
ested in fiber optic and other optic applications may find here a helpful background
in wave theory.

Since the student is expected to be familiar with elementary circuit theory,
we use circuit concepts to develop topics in wave theory. Rather than attempt a
comprehensive overview of current technology, we have developed a select number
of topics that are either useful for technicians working in industry or that are funda-
mental concepts not subject to technological obsolescence.

The text and applications are closely integrated. Occasionally, theory or systems
applications are developed in the applications and problems that appear at the end
of each chapter. Numerical examples are worked out in both the text and the applica-
tions sections. In the first few chapters the numerical examples include instructions
for solving the problems with a scientific calculator.

Since small schools often have little microwave or optic equipment, we have
tried to present laboratory applications that require a minimum of resources. If a
large, well-equipped laboratory is available, the applications can be varied accord-
ingly; for example, if a microwave generator and slotted line are available for each
pair of students, there is little incentive for using rope lines to demonstrate standing
waves.

Because the mathematical prerequisites are geometry, algebra, and trigonome-
try, these subjects are reviewed briefly in the text. There is often a gap between

xi



xii Preface

mathematics and its application in technology, which can be closed by an instructor
familiar with both.

Where some of the material presented is unique or difficult to find in technical
literature, we have developed a topic somewhat more extensively than is expected
in an introductory course. Such developments can be omitted without loss of continu-
ity. In microwave and optic technology several disciplines overlap, and notation is
a problem. We have tried to use symbols that are commonly accepted, redefining
them as they take on new meanings in different aspects of the subject.

We thank Tom Hommel and Mike Pieson of Paragon Cable for their enthusiastic
consultations.
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Waves

1-1 INTRODUCTION

The higher the frequency of an electromagnetic wave, the shorter its wavelength.
At microwave and optic frequencies we shall be working with wavelengths as short
as a few centimeters or a few millimeters; thus the length of a connection between
components may be a substantial fraction of a wavelength or several wavelengths.
This means that phase change and the impedance of the connection must be considered
in attempting to transfer energy from one component to another. We cannot simply
connect components with a length of wire as we do in dc or low-frequency circuits.

We shall see that when a conductor is about a wavelength in size, it may
radiate, that is, act like a broadcasting antenna. This is another reason why we
cannot connect components together with wires. Instead of just conducting electromag-
netic energy from one component to another, the wires will also radiate energy in
the form of electromagnetic waves into surrounding space. We shall have to connect
electronic components together with short, carefully designed transmission lines.

Wave effects become so important at high frequencies that we had best start
our program of microwave and optical electronics with a study of waves.

1-2 DEFINITION OF A WAVE

A wave is a disturbance moving through a medium; for example, a water wave is
a change in height of the water moving across the surface of the water. The surface
of the water is the medium. We note that the medium is not transported with the
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wave: A cork on the surface bobs up and down with the water but does not move
across the surface with the wave. Rather than thinking of the disturbance as moving
through the medium, it is more accurate to think of the disturbance as reproducing
itself at ever-greater distances from its source. For this reason we say that a wave
is a change of state propagating through a medium.

1-3 WAVELENGTH, FREQUENCY, AND VELOCITY

We speak and hear using sound waves, see with light waves, but can most easily
visualize the familiar water wave. The amplitude of a water wave is the height of
a crest above the mean water surface. Wavelength is the horizontal distance between
two corresponding points: for example, the distance from crest to crest or trough
to trough. These definitions are illustrated in Fig. 1-1.

The velocity of a wave is given by the distance s that it travels in an interval
of time ¢,

V= (1-1)
We can determine velocity by watching a particular wave and measuring the time
it takes for it to travel from one point to another; however, an easier way is to
count the number of waves that pass a given point in an interval of time 7. If n is
the number, the total distance traveled by the first wave is n\, and its velocity
must be v = n\/t. Since the number of waves that pass by in an interval of time is
defined as the frequency, f = n/t, we have

A Y

NN (1-2)
This derivation is illustrated in Fig. 1-2 for the case in which five waves pass a
point P in 1 s.
EXAMPLE 1-1
From Fig. 1-2 and Eq. (1-2) we have
v=f\
=5Hz X 1cm
=5cm/s

Figure 1-1 Wave parameters: A,
wavelength; a, amplitude; C, crests; T,
trough; M, mean water level or reference
T height.
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}-)\= 1 cm’{
5 4

- .

Figure 1-2 Determination of wave velocity from a count of the number of waves
that pass a point P in 1 second.

Equation (1-2) is of wide application. It is valid for sound waves, seismic,
electromagnetic, and magnetohydromagnetic waves, as well as for water waves.
For electromagnetic or light waves in free space it is customary to use the letter ¢
for the speed: ¢ = M. If we know wavelength and frequency, we can immediately
determine the wave velocity.

EXAMPLE 1-2

A radio transmitter broadcasts a wavelength of 30 m at a frequency of 10
MHz. What is the wave velocity?

Solution From Eq. (1-2)

c=N
=30 X (10 X 109
=3 X 108 m/s

which is the speed of light in free space.

Another way to derive Eq. (1-2) is to notice that a wavelength passes a fixed
point in a time equal to its period. Its speed must be v = AT, where T is the
period. Since frequency is the inverse of period, f = 1/T, we again obtain Eq.
(1-2).

Since the speed of light in free space is a physical constant, we see, from
Eq. (1-2), that wavelength must decrease as frequency increases. For each frequency
there is only one corresponding wavelength. Electromagnetic waves are given different
names depending on their frequency or wavelength bands, as shown in the electromag-
netic spectrum in Fig. 1-3. A sound-wave spectrum is shown in Fig. 1-4.
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Figure 1-3 Portion of the electromagnetic spectrum.
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Figure 1-4 Spectrum of sound waves.
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1-4 WAVE TYPES

We have been discussing traveling waves; obviously, these are waves that travel
or propagate. Another type of wave is the standing wave, a wave that appears to
stand still. It is familiar to anyone who has tied a rope to a fixed object and moved
the free end of the rope rapidly up and down. The waves reflected from the fixed
end combine with the incident waves to form standing waves, as shown in Fig.
1-5. A standing wave actually is formed from two traveling waves moving in opposite
directions.

Those points on a standing wave that are not displaced by the motion are
called nodes, and points at which maximum displacement occurs are antinodes. If
only one antinode occurs on a line, the line is said to be in its fundamental mode
of oscillation. If the frequency is doubled, two antinodes appear on the line; if
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Antinode Node

Figure 1-5 Standing wave on a rope
line.

tripled, three antinodes; and so on. Frequencies that are integral multiples of the
fundamental are called harmonics.

If there are two antinodes on a line and the frequency is sufficiently increased,
three antinodes will appear, but during the time the frequency is being increased
the line appears to be in wild disarray. This is suggestive of the mysterious quantum
jump in modern physics. The ultimate nature of matter is dualistic: matter is wavelike
as well as corpuscular. If a particle wave is confined, as, for example, an orbital
electron is confined in an atom, its wave pattern must contain an integral number
of antinodes. The electron can jump to quantum states having fewer or more antinodes,
Just as can the rope line. Stable or steady states correspond only to integral numbers
of antinodes in the standing-wave pattern.

A more complicated wave pattern can be achieved by joining two ropes of
different weights, that is, of different linear weight densities. The linear density of
a rope is its weight divided by its length. For example, a 100-m line of weight 6
kg has a linear density of 60 g/m. In general, more antinodes will occur on the
heavier section of line than on the lighter, as shown in Fig. 1-6.

For the two-rope line there is an increased number of possible modes, each
mode defined by the different numbers of antinodes occurring on the heavy and
light sections of the line. We are not aware that any system of classification has
ever been devised for modes on rope lines, but when we study electromagnetic
waves in transmission lines we shall see that an elaborate classification system has

Junction

Figure 1-6 Standing waves on rope
lines of unequal densities.
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been devised in terms of the numbers of antinodes in the electric and magnetic
field components of the waves. In summary, a mode is a particular configuration
of nodes and antinodes of waves in a confined system.

Waves can also be classified in terms of type of motion or displacement. The
wave on,a rope line is a transverse wave, because the displacement of the rope is

#
¢

transverse® or at right angles, to the direction of wave propagation. Electromagnetic
waves gn free space are transverse; sound waves, however, are longitudinal. A
longituginal displacer'nent is a displacement in the direction of propagation. For a
sound wa¥e the Jongitudinal displacements are compressions or dilations of the gas
which correspondf’SO

variations in pressure and density.

1-5 WAVE MEDIA

Some of the characteristics of a wave, such as frequency and amplitude, are determined
by its source, but others, speed for example, are determined by the medium in
which the wave propagates. In general, the more rigid the medium, the greater the
wave velocity. We see, in Table 1-1, that the speed of sound is 1117 ft/s in air
but 16,000 ft/s in steel.

TABLE 1-1 SPEED OF SOUND IN
VARIOUS MEDIA

Speed
English Metric
Medium Units Units
Air? 1,117 ft/s 340.5 m/s
Water 4,800 ft/s 1.463 km/s
Steel 16,000 ft/s 4.88 km/s

2 For standard atmospheric pressure and a
temperature of 59°F.

The formula for the speed of sound in air is, in terms of the physical characteris-
tics of the atmosphere,
k 172
= (ll) (1-3)
m

where, for the earth’s atmosphere, the ratio of specific heats is y = 1.4; Boltzmann’s
constant is k = 1.38 X 1072 joules per kelvin, T is the absolute temperature in
kelvin, T = 273 + °C, and m is the average molecular mass in a standard atmosphere,
4.78 X 10726 kg.



