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PREFACE

This book attempts to give engineering graduate students and prac-
ticing engineers an introduction to the vibration behavior of shells
and plates. It is also hoped that it will prove to be a useful ref-
erence to the vibration specialist. It fills a need in the present
literature on this subject, since it is the current practice to
either discuss shell vibrations in a few chapters at the end of
texts on shell statics that may be well written but are too limited
in the selection of material, or to ignore shells entirely in favor
of plates and membranes, as in some of the better known vibration
books. There are a few excellent monographs on very specialized
topics, for instance, on natural frequencies and modes of cylindri-
cal and conical shells. But a unified presentation of shell and
plate vibration, both free and forced, and with complicating effects
as they are encountered in engineering practice, is still missing.
This collection attempts to fill the gap.

The state of the art of modern engineering demands that engi-
neers have a good knowledge of the vibration behavior of structures
beyond the usual beam and rod vibration examples. Vibrating shell
and plate structures are not only encountered by the civil, aero-

nautical, and astronautical engineer, but also by the mechanical,
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vi Preface

nuclear, chemical, and industrial engineer. Parts or devices such

as engine liners, compressor shells, tanks, heat exchangers, life
support ducts, boilers, automotive tires, vehicle bodies, valve reed
plates, and saw disks, are all composed of structural elements that
cannot be aéproximated as vibrating beams. Shells especially exhibit
certain effects that are not present in beams or even plates and can-
not be interpreted by engineers who are only familiar with beam-type
vibration theory. Therefore, this book stresses the understanding

of basic phenomena in shell and plate vibrations and it is hoped

that the material covered will be useful in explaining experimental
measurements or the results of the ever-increasing number of finite
element programs. While it is the goal of every engineering manager
that these programs will eventually be used as black boxes, with
input provided and output obtained by relatively untrained techni-
cians, reality shows that the interpretation of results of these
programs requires a good background in finite element theory and,

in the case of shell and plate vibrations, in vibration theory of
greater depth and breadth than usually provided in standard texts.

It is hoped that the book will be of interest to both the
stress analyst whose task it is to prevent failure and to the acous-
tician whose task it is to control noise. The treatment is fairly
complete as far as the needs of the stress analysts go. For acous-
ticians, this collection stresses those applications in which bound-
ary conditions cannot be ignored.

The note collection begins with a historical discussion of
vibration analysis and culminates in the development of Love's equa-
tions of shells. These equations are derived in Chapter 2 in curvi-
linear coordinates. Curvilinear coordinates are used throughout as
much as possible, because of the loss of generality that occurs when
specific geometries are singled out. For instance, the effect of
the second curvature cannot be recovered from a specialized treat-
ment of cylindrical shells. Chapter 3 shows the derivation by re-
duction of the equations of some standard shell geometries that have
a tendency to occur in standard engineering practice, like the cir-

cular cylindrical shell, the spherical shell, the conical shell, and
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§o on. In Chapter 4 the equations of motion of plates, arches,
rings, beams, and rods are obtained. Beams and rings are sometimes
used as supplementary examples in order to tie in the knowledge of
beams that the reader may have with the approaches and results of
shell and plate analysis.

Chapter 5 discusses natural frequencies and modes. It starts
with the transversely vibrating beam, followed by the ring and plate.
Finally, the exact solution of the simply supported circular cylindri-
cal shell is derived. The examples are chosen in such a way that the
essential behavior of these structures is unfolded with the help of
each previous example; the intent is not to exhaust the number of
possible analytical solutions. For instance, in order to explain
why there are three natural frequencies for any mode number combina-
tion of the cylindrical shell, the previously given case of the vi-
brating ring is used to illustrate modes in which either transverse
or circumferential motions dominate.

In the same chapter, the important property of orthogonality
of natural modes is derived and discussed. It is pointed out that
when two or more different modes occur at the same natural frequency,
a superposition mode may be created that may not be orthogonal, yet
is measured by the experimenter as the governing mode shape. Ways
of dealing with this phenomenon are also pointed out.

For some important applications, it is possible to simplify
the equations of motion. Rayleigh's simplification, in which either
the bending stiffness or the membrane stiffness is ignored, is pre-
sented. However, the main thrust of Chapter 6 is the derivation and
use of the Donnell-Mushtari-Vlasov equations.

While the emphasis of Chapter 5 was on so-called exact solu-
tions (series solutions are considered exact solutions), Chapter 7
presents some of the more common approximate techniques to obtain
solutions for geometrical shapes and boundary condition combinations
that do not lend themselves to exact analytical treatment. First,
the variational techniques known as the Rayleigh-Ritz technique

and Galerkin's method and variational method are presented. Next,

the purely mathematical technique of finite differences is outlined,
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with examples. The finite element method follows. Southwell's and
Dunkerley's principles conclude the chapter.

The forced behavior of shells and plates is presented in Chap-
ters 8, 9, and 10. 1In Chapter 8, the modal analysis approach is
used to arrive at the general solution for distributed dynamic loads
in transverse and two orthogonal in-plane directions. The Dirac
delta function is then used to obtain the solutions for point and
line loads. Chapter 9 discusses the dynamic Green's function ap-
proach and applies it to traveling load problems. An interesting
resonance condition that occurs when a load travels along the great
circles of closed shells of revolution is shown. Chapter 10 extends
the types of possible loading to the technically significant set of
dynamic moment loading, and illustrates it by investigating the ac-
tion of a rotating point moment as it may occur when rotating un-
balanced machinery is acting on a shell structure.

The influence of large initial stress fields on the response
of shells and plates is discussed in Chapter 11. First, Love's
equations are extended to take this effect into account. It is
then demonstrated that the equations of motion of pure membranes
and strings are a subset of these extended equations. The effect
of initial stress fields on the natural frequencies of structures is
then illustrated by examples.

In the original derivation of Love's equations, transverse
shear strains, and therefore shear deflections, were neglected.

This becomes less and less permissible as the average distance be-
tween node lines associated with the highest frequency of interest
approaches the thickness of the structure. In Chapter 12, the shear
deformations are included in the shell equations. It is shown that
these equations reduce in the case of a rectangular plate and the
case of a uniform beam to equations that are well known in the vi-
bration literature. Sample cases are solved to illustrate the ef-
fect shear deformation has on natural frequencies.

Rarely are practical engineering structures simple geometric
shapes. In most cases the shapes are so complicated that finite

element or difference methods have to be used for accurate numerical
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results. However, there is a category of cases in which the engi-
neering structures can be interpreted as being assembled of two or
more classic shapes or parts. 1In Chapter 13, the method of recep-
tance is presented and used to obtain, for instance, very general
design rules for stiffening panels by ring- or beam-type stiffeners.
It is also shown that the receptance method gives elegant and easily
interpretable results for cases in which springs or masses are added
to the basic structure.

The formulation and use of equivalent viscous damping was ad-
vocated in the forced vibration chapters. For steady-state harmonic
response problems a complex modulus is often used. TIn Chapter 14,
this type of structural damping, also called hystereses damping, is
presented and tied in with the viscous damping formulation.

Because of the increasing importance of composite material
structures, the equations of motion of laminated shells are presented
and discussed in Chapter 15, along with some simple examples.

This book evolved over a period of almost ten years from lec-
ture notes on the vibration of shells and plates. To present the
subject in a unified fashion made it necessary to do some original
work in areas where the available literature did not provide complete
information. Some of it was done with the help of graduate students
attending my lectures, for instance R. G. Jacquot, U. R. Kristiansen,
J. D. Wilken, M. Dhar, U. Bolleter, and D. P. Powder. Especially
talented in detecting errors were M. G. Prasad, F. D. Wilken, M. Dhar,
S. Azimi, and D. P. Egolf. Realizing that I have probably forgotten
some significant contributions, I would like to single out in addition
0. B. Dale, J. A. Adams, D. D. Reynolds, M. Moaveni, R. Shashaani,

R. Singh, J. R. Friley, J. DeEskinazi, F. Laville, E. T. Buehlmann,
N. Kaemmer, C. Hunckler, and J. Thompson, and extend my appreciation
to all my former students.

I would also like to thank my colleagues on the Purdue Univer-
sity faculty for their direct or indirect advice.

If this book is used for an advanced course in structural vi-

brations of about forty-five lectures, it is recommended that Chap-

ters 7 through 8 be treated in depth. If there is time remaining,
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highlights of the other chapters can be presented. Recommended
prerequisites are a first course in mechanical vibrations and knowl-
edge of boundary value problem mathematics.

Werner Soedel
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HISTORICAL DEVELOPMENT OF VIBRATION ANALYSIS
OF CONTINUOUS STRUCTURAL ELEMENTS

Vibration analysis has its beginnings with Galileo Galilei (1564-
1642), who solved by geometrical means the dependence of the natural
frequency of a simple pendulum on the pendulum length [1.1]. He
proceeded to make experimental observations on the vibration be-
havior of strings and plates, but could not offer any analytical
treatment. He was partially anticipated in his observations of
strings by his contemporary Marin Mersenne (1588-1648), a French
priest. Mersenne recognized that the frequency of vibration is
inversely proportional to the length of the string and directly
proportional to the square root of the cross-sectional area [1.2].
This line of approach found its culmination in Joseph Sauveur
(1653-1716), who coined the terminology ''modes' for zero displace-
ment points on a string vibrating at its natural frequency and also
actually calculated an approximate value for the fundamental fre-
quency as a function of the measured sag at its center, similar to
the way the natural frequency of a single degree of freedom spring-
mass system can be calculated from its static deflection [1.3].

The foundation for a more precise treatment of the vibration

of continuous systems was laid by Robert Hook (1635-1703) when he
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Historical Development of Vibration Analysis 3

it is almost a rule in the history of science that people that are
credited with an achievement do not completely deserve it. Progress
moves in small steps and it is often the individual who publishes

at the right developmental step and at the right time who gets the
public acclaim.

The longitudinal vibration of rods was investigated experi-
mentally by Chladni [1.9] and Biot [1.10]. However, not until 1824
do we find the published analytical equation and solutions, done by
Navier. This is interesting since the analogous problem of the
longitudinal vibration of air columns was already done in 1727 by
Euler [1.11].

The equation for the transverse vibration of flexible thin
beams was derived in 1735 by Daniel Bernoulli [1.12] and the first
solutions for simply supported ends, clamped ends, and free ends
where found by Euler [1.13] and published in 1744,

The first torsional vibration solution, but not in a continu-
ous sense, was given in 1784 by Coulomb [1.14]. But not until 1827
do we find an attempt to derive the continuous torsional equation
[1.15]. This was done by Cauchy (1789-1857) in an approximate
fashion. Poisson (1781-1840) is generally credited for having
derived the one dimensional torsional wave equation in 1827 [1.16].
The credit for deriving the complete torsional wave equation and
giving some rigorous results belongs to Saint-Venant (1797-1886),
who published this in 1849 [1.17].

In membrane vibrations, Euler in 1766 published equations for
a rectangular membrane that were incorrect for the general case but
will reduce to the correct equation for the uniform tension case
[1.18]. It is interesting to note that the first membrane vibration
case investigated analytically was not the circular membrane, even
while the latter, in form of the drum head, would have been the more
obvious shape. The reason is that Euler was able to picture the
rectangular membrane as a superposition of a number of crossing
strings. In 1828 Poisson read a paper to the French Academy of
Science on the special case of uniform tension and showed the cir-

cular membrane equation and solved it for the special case of



