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Series Preface

This series is intended for those individuals involved in robotics and intelligence
systems research, design, development, and scholarly activities.

This volume is concerned with state-of-the-art developments in robotics and
intelligent systems by providing insight and guidance into specific techniques
vital to those concerned with design and implementation of robotics and intel-
ligent system applications.

The material contained in this volume discusses motion learning and vision-
based robotics, control algorithms, accuracy issues, networking robots, and ro-
botic programming techniques.

The editors wish to thank the contributing authors for making available the
information contained in this book.

George W. Zobrist
(@ o)
University of Missouri-Rolla

May 1994



Contents

Series Preface

1

Experimental Analysis of Convex Volumes Enclosing Parametric
Surfaces
Chaman L. Sabharwal and Thomas G. Melson

Motion Learning in Robotized Mechanical Systems
Guiseppe Casalino and Michele Aicardi

Vision-Based Robotic Assembly System
Z. Bien, I.H. Suh, S-.R Oh, and B.-J. You

Robot Accuracy Issues and Methods of Improvement
Chia P. Day

Intensity Blending of Computer Image Generation-Based Displays
E.A. Reidelberger and Daniel C. St. Clair
Long-Range Adaptive Control Algorithms for Robotics Applications
J.M. Lemos, F. Coito, P. Shirley, P. Concei¢do,
F. Garcia, C. Silvestre, and J.S. Sentiero
Research Problems in Computer Networking for Manufacturing
Systems
Asok Ray and Shashi Phoha
Reduced Protocol Architecture for Factory Applications
Luigi Ciminiera, Claudia Demartini, and Adriano
Valenzano

A Programming Methodology for Robotic Arc Welding
Kristinn Andersen, George E. Cook, Saleh Zein-Sabattou,
Robert Joel Barnett, and Kenneth R. Fernandez

Author Index

Subject Index

vii

27

61

90

109

134

196

214

253

293
297



1

Experimental Analysis of Convex Volumes
Enclosing Parametric Surfaces

Chaman L. Sabharwal
University of Missouri—ROLLA

Thomas G. Melson
Computer Aided Technology, MCAIR

1. INTRODUCTION

Computing intersections between geometric objects in particular surfaces [1] is a
key capability of CAD/CAM systems and many other geometric modeling sys-
tems. Parametric equations completely separate the roles of independent and
dependent variables, both geometrically and algebraically, and allow for any num-
ber of variables (i.e., there is a natural extension from two- to three-dimensional
space). Parametrically defined objects are inherently bounded because the parame-
ter space is normalized to a unit square. There is no need to carry additional data to
define boundaries. The calculation and intersection of bounding volumes for
parametric surfaces is used, in a wide range of applications, as a scaffold to
mitigate the agony of complex computations. The rectangular parallelepiped
bounding volumes are also referred to as bounding boxes, or simply boxes.
Bounding boxes are interchangeably used for rectangular parallelepiped bounding
volumes. Bounding volumes are useful for parametric surface intersections [2, 3],
collision detection [4], and partitioning of polyhedral objects into nonintersecting
parts [5].

The intersection between objects and the collision detection problem arises in
CAD/CAM applications where one needs to cull disjoint objects before compu-
tationally intensive analysis is performed on the objects. Human eyes can detect
intersection easily and instantaneously, but it is a difficult problem for the com-
puter to visualize this phenomena. The culling process is done by first enclosing
the two objects in bounding volumes and determining whether or not the bound-
ing volumes intersect. The cost of detecting the intersecting bounding volumes is
significantly lower than the cost of intersecting the objects. The bounding vol-
umes may intersect, but the objects may not. In that case, a more computation-
intensive analysis is performed.
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This problem arises also in other areas such as Robotics, where interference
detection is to be determined; and Computer Graphics, where hidden surface
removal and ray tracing take place. For intersection between surfaces, one sub-
divides the larger surfaces into smaller and simpler surface pieces. This subdivi-
sion process is a selective subdivision in which the surfaces are enclosed in
bounding volumes and the bounding volumes are tested for intersection condi-
tions to detect the need for further subdivision of the surfaces. It is easier to
detect the intersection condition between the bounding volumes than between the
surfaces themselves. Further, in some applications, because the bounding boxes
are used for the culling process only, actual intersection between the bounding
volumes is not required: Only a flag value is used to indicate the existence or
nonexistence of intersection. Note that computation of actual intersection be-
tween the bounding volumes leads to a more complex problem of intersection
between CO surfaces. The designer of an algorithm has two goals at hand: (a) The
algorithm should be understandable, easy to code, and easy to debug. (b) It
should make optimal use of computer resources with respect to both storage
space and execution time. We have these two goals in mind in the analysis of the
methods to be considered. Several methods have been used to calculate the
bounding volumes for surfaces and to detect the intersection between them. This
chapter singles out one method that is mathematically sound, numerically less
prone to computational errors, computationally efficient, and easier to under-
stand and implement. The source code and load segments make efficient use of
computer resources. An execution time efficiency analysis is performed to deter-
mine its suitability for use in production modules.

2. DISCUSSION OF METHODS

The bounding volumes for the surfaces can be computed in several ways. An
important and much-debated issue is how to calculate the enclosing volume. The
object of this presentation is to put this issue to rest for a long time. The methods
for calculating the bounding volumes for surfaces can be classified as: (a) axis-
oriented parallelepipeds [2, 3], (b) surface-oriented parallelepipeds [6], (c) con-
vex hulls [7], (d) ellipsoids [8], and (e) spheroids [9, 10]. There is a need for an
ideal method guaranteeing that the surface remains entirely within its bounding
volume. However, this task is impossible for an arbitrary parametric surface with
no additional structural information. In the absence of additional information,
only the sampled points are used to compute the bounding volumes. There is no
way to guarantee the behavior of the function values where the surface is not
sampled, if samples are the only information available. It is, therefore, desirable
to minimize the difference between the computed bounding volume enclosing the
surface and the actual geometric volume containing the surface. At the same
time, there is a need to strike a balance to achieve the best out of the available
methods for bounding volumes.
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Analytical comparison shows that methods (b), (c), (d), and (e) are poor
choices for one or more of the following reasons: the excessive computation time
for the calculation of bounding volumes, the convex hull property of the sur-
faces, smoothness constraints on surfaces, and the excessive performance time
for intersecting the bounding volumes. The torus represents an example of a
surface where none of the above-mentioned bounding volume methods works
well. The simplicity of a box calculation with axis-oriented parallelepipeds and
the associated simplicity in box intersection makes the axis-oriented method
more acceptable than other methods.

To keep the comparisons simple, the details of the methods have been sim-
plified. The spirit of the techniques has been retained in order to point out the
complexity of the methods. For execution time analysis, run-time tests are per-
formed on the axis-oriented and surface-oriented methods that are currently used
at the McDonnell Douglas Corporation. These methods can be characterized as
follows: (a) use only the position value, 0-dimensional information, to calculate
axis-oriented bounding volumes or (b) use a position value and three direction
vectors, 1-dimensional information, to calculate the surface-oriented bounding
volumes.

2.1. Details of Axis-Oriented Method

This method is designed to compute approximate bounding boxes, which are
oriented along the axes of the coordinate system. Two different methods for
computing the axis-oriented bounding volumes, considered here, depend on the
nature of the surfaces (e.g., C° and C? surfaces). However, the method for
CO surfaces will still be applicable to C? surfaces.

2.1.1. Axis-Oriented Method for C° Surfaces.

This method is the same as implemented in the original surface/surface inter-
section algorithm [2, 3]. Since it was used in the surface/surface intersection
algorithm as implemented in 1981, it is referred to as SURF81. Since the imple-
mentation of this algorithm was revised in 1987 to eliminate the unnecessary
calculations and reduce the repeated evaluator calls, the same method in the
revised version is referred to as SURF87. In this method, it is easier to calculate
the bounding volume and simpler to detect the intersection between the bounding
volumes. For computation-intensive practical applications, it is not necessary to
have exact bounding volumes because the approximate bounding volumes can be
used without loss of information. Sample N2 points on the surface R(u, v),
equally spaced parametrically, calculate the Maximum and Minimum points over
the sampled data. It gives an approximate bounding volume for the surface
R(u, v). Since the computations are over the sampled points on the surface, there
is no guarantee that the surface lies entirely inside the bounding volume. Exten-
sive empirical evidence indicates that, on the average, if the boxes over a surface
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with D-degree curvature is expanded by 0.D percent, the resulting bounding
volumes would normally contain the surface. This is sufficient for practical
applications where the numerical accuracy of the bounding volumes is not neces-
sary or required. However, this or any other numerical method can be frustrated
by creating sufficiently unrealistic examples. Thus, the bounding volume for a
surface R(u, v) is given by two points (Min and Max), such that

Min(i) = R(u, v, i) = Max(i)

fori = 1,2, 3; LWU = u < UPU and LWV < vy < UPV.

Here LWU and LWV are the lower bounds on the parameters « and v, UPU and
UPYV are the upper bounds on the parameters « and v, and i = 1, 2, and 3 refer to
the x-, y-, and z-coordinates of the points.

Determining whether the axis-oriented bounding volumes intersect (or not) is
as easy as calculating these volumes. Two bounding volumes (Min,, Max,) and
(Min,, Max,) are disjoint provided there exists an i, | < i =< 3, such that

Max, (i) < Min,(i), or
Max, (i) < Min,(i).

It shows that it is easy to calculate the bounding volumes and it is even easier to
detect the intersection condition between the axis-oriented bounding volumes.

FIGURE 1.1. Axis-Oriented Bounding Box
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FIGURE 1.2. Axis-Oriented Boxes Intersect, Surfaces Do Not Intersect

2.1.2. Axis-Oriented Method for C? Surfaces.

This method applies to C¥, k = 2, surfaces only and was developed at Automa-
tion Technology Products [11]. This technique depends on the ability to calculate
the second-order partial derivatives of the surface with respect to the surface
parameters and the bounds on these derivatives. The discussion of this method
warrants the discussion of some terminology. Let (p, ¢), (p + dp, ¢), and
(p, g + dg) be three points in the parameter space of the surface R(u, v). The
surface R(u, v) can be linearly approximated by L(u, v) over the nondegenerate
triangle (p, q), (p + dp, q), and (p, ¢ + dg) within a specified tolerance epsilon.
The approximation function is given by:

L(u, v) = R(p, q) + (u — p)(R(p + dp, q) — R(p, q))/dp
+ (v — @R(p, g + dq) — R(p, q))/dq

provided

(dp> M, + 2 dp dg M, + dg> M) < 8 * epsilon
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where

M, = SUPHRH(“' i,
M, = Sup”R,z(u, V)“’
My = sup|Ry(u, v).

Here R, (u, v) is the second-order partial derivative with respect to u, R,,(u, v) is
the second-order partial derivative with respect to v, R,,(u, v) is the second-order
mixed partial derivative with respect to « and v of R(u, v); sup is the maximum
value of the two-norms of the second-order derivative function over the specified
triangular domain: (p, q), (p + dp, q), and (p, ¢ + dg).

Calculate integers n and m to create a uniform parametric grid, such that

(M,/n? + 2M,/mn + M;/m?) < 8 * epsilon.

Special cases may arise in the calculation of n and m when M, M,, and/or M,
become zero.

If M,, M, and M, are all zero, then the surface reduces to a plane with linear
isoparametric curves. In this case, both m and n are set equal to one because

R, (u, v) =0, Ryp(u, v) = 0, and R ,(u, v) = 0.

If M, and M are both zero, then the surface is flat along the isoparametric curves
and both m and n are treated as equal. This accounts for linearity of isoparametric
curves used in the surface/surface intersection problem.

If M, = 0, then the surface is flat in the u-direction and 7 is set equal to 1.

If My = 0, then the surface is flat in the v direction and m is set equal to 1.

If M, and M; are both nonzero, then the calculated mixed partial derivative
term is rolled proportionally in u and v steps based on M,/M, (i.e., n/m is set to
be M ,/M;).

This method depends on the direct evaluation of second-order partial deriva-
tives and their 2-norms. There are two problems associated with this method.
First, the second-order derivatives may not exist for the surface, as in the case of
C' surfaces. Secondly, even if the derivatives exist, it may be time consuming to
compute these derivatives and the bounds on the 2-norms of these derivatives.
No doubt, it is easy to implement the calculation of the derivatives in the case of
polynomial surfaces. In particular, these derivatives for cubic parametric sur-
faces reduce to linear terms and it is trivial to calculate bounds on linear expres-
sions.

Let K be defined as

K = (M,/n? + 2My/mn + M,/m?)/8.
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To calculate the bounding volume for a surface, first the term K is computed and
then Max’ and Min’ are calculated as the maximum and minimum values of
R(p. q). R(p + dp, q), R(p, g + dq), and R(p + dp, q + dg)—rtour corners of a
surface piece. The bounding volume of this surface piece is than obtained by
using K as the expansion factor:

Min(i)) = Min'(}) — K,
Max(i) = Max'(i) + K, fori =1, 2, and 3.

This technique guarantees that the entire surface piece lies inside the bounding
volume. It is based on the ability to calculate the second-order derivatives, to
calculate the bounds on them, and finally to calculate the maximum and mini-
mum of the corner points. This method is very successful with polynomial
surfaces, specifically with cubic polynomial surfaces. However, this technique is
not practical at all for general parametric surfaces. The difficulty lies in the
calculation of the second-order derivatives for general parametric surfaces where
the derivatives may not exit. Even when the derivatives exist, it is not easy to
compute the norms on these derivatives. This problem makes such a method very
clumsy to use in real time applications. In general, these norms are not used in
CAGD [11].

2.2. Details of Surface-Oriented Method

This method differs from the axis-oriented method, SURF81/SURF87, discussed
in Section 2.1.1., because the bounding volumes are not oriented along the
coordinate axes. Rather, they are oriented along the surface involving the posi-
tioning of the surface. Such bounding volumes are supposed to yield smaller
geometric volumes enclosing the surfaces [6]. For computation-intensive ap-
plications it is not only desirable but also necessary to minimize the number
of bounding volumes. Thus, it was assumed that, in general applications, the
surface-oriented bounding volumes will be fewer in number than the axis-
oriented bounding volumes.

A local coordinate system for the surface piece for the surface R(u, v) is
calculated on the parameter rectangle [«;, u,] X [v;, v,], where u;, v, are the initial
values of the parameters and u,, v, are the terminal values of the parameters.
Define a unit vector ¢, in terms of the position values along the v = v, orv = v,
parametric curves, if possible. Otherwise, consider e, to be the unit vector along
the positive direction of the x-axis of the coordinate system. Similarly, if pos-
sible, define a unit vector e, in terms of the position values along the u = u; or
u = u, parametric curves. Otherwise, consider e, to be the unit vector along the
positive direction of the y-axis of the coordinate system. Once two noncollinear
vectors are determined, the third unit vector is determined by the relation
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ey ==(ay i ez)/le, X e2|

where “X” denotes the cross-product between the vectors.
Since e, and e, are not necessarily orthogonal, the unit vector e, is recalcu-
lated as

e, = (e5 X e))l]e; X e].

The resulting vectors e,, e,, and e, form a local orthonormal system. Relative to
this orthonormal system, Min and Max are calculated as in Section 2.1.1. The
surface-oriented bounding volume is defined in terms of three components:

1. Min is the anchor point.

2. The sides are oriented along the direction vectors of the local orthonormal
system and they emanate from the anchor point.

3. The lengths of the sides of the bounding volume are determined by using the
values of Min and Max computed above.

The intersection condition between two bounding volumes is determined after
performing the following two steps:

1. Transform one of the bounding volumes in such a way that the anchor point
coincides with the origin and the sides are oriented along the positive direc-
tions of x-, y-, and z-axis.

FIGURE 1.3. Surface-Oriented Bounding Box
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FIGURE 1.4. Surface-Oriented Boxes Do Not Intersect, Surfaces Do Not
Intersect

2. Apply the same transformation to the second bounding volume. The inter-
section condition is evaluated by performing the intersection of the edges of
one box with the plane faces enclosing the other bounding volume and vice
versa.

2.3. Details of Convex Hull Method

This method differs from methods discussed in Sections 2.1.1, 2.0 2 sand 2.2
because a convex hull is not necessarily a rectangular parallelepiped. Rather, a
convex hull is a systematic collection of planes wrapping around the surface such
that the enclosing volume is minimal. There is less deviation between the volume
of a convex hull and the geometric volume of a surface than with the previous
methods.

The calculation of convex hulls is a function of control points of such spe-
cialized surfaces as B-spline and Bezier surfaces. The calculation of convex hulls
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FIGURE 1.5. Convex Hull

for general parametric surfaces is a hard nut to crack. The computation of the
convex hulls and the intersection between the convex hulls for general parametric
surfaces is more complex than it is for surface-oriented boxes. Literature is full
of techniques for evaluating the convex hulls [12]. We will not delve into the
details of convex hull calculations because it is not the way to approach bounding
volumes for arbitrary parametric surfaces.

2.4. Details of Ellipsoidal Method

This method is applicable to C*, k = 1, surfaces only [8]. This procedure de-
pends on the ability to calculate the first-order partial derivatives of the surface
and the bounds on these derivatives. This technique differs from all the methods
discussed in Sections 2.1.1, 2.1.2, 2.2, and 2.3, where the bounding volumes
are enclosed by planar faces. Here the bounding volumes themselves are curved
surfaces and they are ellipsoidal or spheroidal in nature.

The discussion of this method warrants the discussion of some terminology.
Let the surface R(u, v) be defined over the rectangle [u;, v;] X [u,, v,], where
u;, v; are the initial values of the parameters, and u,, v, are the terminal values of
the parameters u, v. The 2-norm of A is denoted by ||A|| and is defined by the
square root of the sum of the squares of the components of A. Let K be the
Lipschitz constant for the surface R(u, v), such that

||R(u, v) — R(u,, Vl)” = K“(u, v) = (u, V1)”-
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Since
I, v) = Gy, vl =< (e = wy] + v = vy
the Lipschitz condition can be replaced by a simpler modified condition
IR, v) = R(uy, v))|| < K — w)| + |v — v,)).

This modified condition is used to calculate the ellipsoidal bounding volume with
two foci at R(u,, v,) and R(u,, v,), and with the length of major axis as

L =K(u; — u| + v, = v)).
The resulting ellipsoid becomes
IRGu, v) = RGu;, v)I + [R(x, v) = R@u,, v,)|| = L.

The calculation [8] of the Lipschitz constant, K, is found for C! continuous
surfaces as K =

sup([R, (u, v)| + [IRo(u, v)|)).

Here R (u, v) is the first-order partial derivative vector with respect to u, and
R,(u, v) is the first-order partial derivative vector with respect to v of R(u, v); sup
is the maximum value of the sum of the 2-norms of the first-order derivatives of
R(u, v) over the defining rectangle

[u;, v] X [u, v,].

If R(u;, v;) = R(u,, v,) then ellipsoids reduce to spheroids. For brevity, the ellipsoid
with foci P, P,, and major axis length L, is denoted by b= (P Bs, L y).

The ellipsoidal technique is feasible for surfaces such as bicubics or low-order
polynomials because local maximums of the parametric derivatives are easy to
evaluate. If the surface is piecewise continuously differentiable, the maximum of
each piece may be used. The application must know, in advance, the number of
pieces used in the definition. This method at least guarantees that the entire
surface will lie inside the bounding volume. Many applications, such as surface/
surface intersection, use the bounding volumes for the culling process and thus
do not require this guarantee of numerical accuracy. In such cases, sampled
positional data may be used for calculating the derivatives [13].

The intersection condition can be determined by using the foci and Lipschitz
constant for one bounding volume and the sampled positional data of the second
bounding volume. That is, two ellipsoidal bounding volumes,
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Ep = (P, Py, Lp) and
Eo = (2, 05, Ly),

I

intersect if there exists a point P on E, such that

P = Qill + P = Qfl = Lg or
there exists a point Q on E,, such that

lo — Pl + ll2 — Pl = L,.

This method is simpler than the surface-oriented technique and more complex than
the axis-oriented method for the calculation and intersection of bounding volumes.
However, it depends on the availability of calculations for the first-order partial
derivatives and the norms on them. Hence, this method is not applicable to
arbitrary parametric surfaces. Since axis-oriented and surface-oriented methods
both use positional data, they are applicable to a more general class of parametric
surfaces. These methods will be the prime candidates for run-time analysis in this
discussion.

FIGURE 1.6. Ellipsoidal Bounding Volume



