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Preface

Goals and Emphasis of the Book

Mathematicians have begun to find productive ways to incorporate computing power
into the mathematics curriculum. There is no attempt here to use computing to avoid
doing differential equations and linear algebra. The goal is to make some first ex-
plorations in the subject accessible to students who have had one year of calculus.
Some of the sciences are now using the symbol-manipulative power of Mathemat-
ica to make more of their subject accessible. This book is one way of doing so for
differential equations and linear algebra.

I believe that if a student’s first exposure to a subject is pleasant and exciting,
then that student will seek out ways to continue the study of the subject. The theory
of differential equations and of linear algebra permeates the discussion. Every topic
is supported by a statement of the theory. But the primary thrust here is obtaining
solutions and information about solutions, rather than proving theorems. There are
other courses where proving theorems is central. The goals of this text are to establish
a solid understanding of the notion of solution, and an appreciation for the confidence
that the theory gives during a search for solutions. Later the student can have the same
confidence while personally developing the theory.

When a study of the book has been completed, many important elementary con-
cepts of differential equations and linear algebra will have been encountered. In
addition, the use of Mathematica makes it possible to analyze problems that are
formidable without computational assistance. Mathematica is an integral part of the
presentation, because in introductory differential equations or linear algebra courses
it is too often true that simple tasks like finding an antiderivative, or finding the roots
of a polynomial of relatively high degree—even when the roots are all rational—
completely obscure the mathematics that is being studied. The complications en-
countered in the manual solution of a realistic problem of four first-order linear equa-
tions with constant coefficients can totally obscure the beauty and centrality of the
theory. But having Mathematica available to carry out the complicated steps frees
the student to think about what is happening, how the ideas work together, and what
everything means.
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The text contains many examples. Most are followed immediately by the same
example done in Mathematica. The form of a Mathematica notebook is reproduced
almost exactly so that the student knows what to expect when trying problems by
him/herself. Having solutions by Mathematica included in the text also provides a
sort of encyclopedia of working approaches to doing things in Mathematica. In ad-
dition, each of these examples exists as a real Mathematica notebook that can be
executed, studied, printed out, or modified to do some other problem. Other Math-
ematica notebooks may be provided by the instructor. Occasionally a problem will
request that new methods be tried, but by the time these occur, students should be
able to write effective Mathematica code of their own.

Mathematica can carry the bulk of the computational burden, but this does not
relieve the student of knowing whether or not what is being done is correct. For that
reason, periodic checking of results is stressed. Often an independent manual calcu-
lation will keep a Mathematica calculation safely on course. Mathematica, itself, can
and should do much of the checking, because as the problems get more complex, the
calculations get more and more complicated. A calculation that is internally consis-
tent stands a good chance of being correct when the concepts that are guiding the
process are correct.

Since all of the problems except those that are of a theoretical nature can be
solved and checked in Mathematica, very few of the exercises have answers supplied.
As the student solves the problems in each section, they should save the notebooks
to disk—where they can serve as an answer book and study guide if the solutions
have been properly checked. A Mathematica package is a collection of functions
that are designed to perform certain operations. Several notebooks depend heavily
on a package that has been provided. Most of the packages supplied undertake very
complicated tasks, where the functions are genuinely intimidating, so the code does
not appear in the text of study notebooks.

What Is New in This Edition

The changes are two-fold:

1. Rearrange and restate some topics (Linear algebra has now been gathered into
a separate chapter, and series methods for systems have been eliminated.) Many
typographical errors have been corrected.

2. Completely rewrite, and occasionally expand, the Mathematica code using ver-
sion 5 of Mathematica.

In addition, since Mathematica now includes a complete and fully on-line Help sub-
system, several appendices have been eliminated.

Topics Receiving Lesser Emphasis

The solutions of most differential equations are not simple, so the solutions of such
equations are often examined numerically. We indicate some ways to have Math-
ematica solve differential equations numerically. Also, properties of a solution are
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often deduced from careful examination of the differential equation itself, but an
extended study of qualitative differential equations must wait for a more advanced
course. The best advice is to use the NDSolve function when a numerical solution
is required.

Some differential equations have solutions that are very hard to describe either
analytically or numerically because the equations are sensitive to small changes in
the initial values. Chaotic behavior is a topic of great current interest; we present
some examples of such equations, but do not fully develop the concepts.
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1

About Differential Equations

1.0 Introduction

What Are Differential Equations? Who Uses Them?

The subject of differential equations is large, diverse, powerful, useful, and full of
surprises. Differential equations can be studied on their own—just because they are
intrinsically interesting. Or, they may be studied by a physicist, engineer, biologist,
economist, physician, or political scientist because they can model (quantitatively
explain) many physical or abstract systems. Just what is a differential equation? A
differential equation having y as the dependent variable (unknown function) and x as
the independent variable has the form

dy d'y
Flxy,—, ... —|=0
(” dx dx”)

for some positive integer n. (If n is 0, the equation is an algebraic or transcendental
equation, rather than a differential equation.) Here is the same idea in words:

Definition 1.1. A differential equation is an equation that relates in a nontrivial
manner an unknown function and one or more of the derivatives or differentials of
that unknown function with respect to one or more independent variables.

The phrase “in a nontrivial manner” is added because some equations that appear
to satisfy the above definition are really identities. That is, they are always true, no
matter what the unknown function might be. An example of such an equation is:

. dy dy

2 2

n“| —=1|+ co i 1.
. (dx) s (dx)

This equation is satisfied by every differentiable function of one variable. Another

example is:
p (&) =(3) -»(2)+r
ax ’) T dx Y dx) "
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This is clearly just the binomial squaring rule in disguise: (a + b)* = @ + 2ab + v
it, too, is satisfied by every differentiable function of one variable. We want to avoid
calling such identities differential equations.

One quick test to see that an equation is not merely an identity is to substitute
some function such as sin(x) or * into the equation. If the result is ever false, then
the equation is not an identity and is perhaps worthy of our study. For example,
substitute y = sin(x) into y’ + y = 0. The result is cos(x) + sin(x) = 0, and this is
not identically true. (It is false when x = 7, for instance.) If you have a complicated
function and are unsure whether or not it is identically 0, you can use Mathematica
to plot the function to see if it ever departs from 0. This does not constitute a proof,
but it is evidence, and it suggests where to look if the function is not identically 0. A
plot can be produced this way:

In[1]:= Plot[Cos[x] +Sin[x], {x, 0, 27}];

Note that Pi is the symbol 7 in disguise. The 7 symbol can be found in the
BasicInput palette.
Another extreme that we would like to avoid is an equation that is never true for
real functions, such as
d 2
(7=

dx
No matter what the real differentiable function y is, the left-hand side of the equa-
tion is nonnegative and the right-hand side is negative—and this cannot happen. So
the equations we want to study are those that can have some solutions, but not too
many solutions. The meaning of this will become clear as we proceed. Unless stated
otherwise, the solutions we seek will be real.

Classification of Differential Equations

Differential equations are classified in several different ways: ordinary or partial;
linear or nonlinear. There are even special subclassifications: homogeneous or
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nonhomogeneous; autonomous or nonautonomous; first-order, second-order, ...
, n th-order. Most of these names for the various types have been inherited from
other areas of mathematics, so there is some ambiguity in the meanings. But the
context of any discussion will make clear what a given name means in that context.
There are reasons for these classifications, the primary one being to enable discus-
sions about differential equations to focus on the subject matter in a clear and unam-
biguous manner. Our attention will be on ordinary differential equations. Some will
be linear, some nonlinear. Some will be first-order, some second-order, and some of
higher order than second. What is the order of a differential equation?

Definition 1.2. The order of a differential equation is the order of the highest deriva-
tive that appears (nontrivially) in the equation.

At this early stage in our studies, we need only be able to distinguish ordinary
from partial differential equations. This is easy: a differential equation is an ordinary
differential equation if the only derivatives of the unknown function(s) are ordinary
derivatives, and a differential equation is a partial differential equation if the only
derivatives of the unknown function(s) are partial derivatives.

Example 1.1 Here are some ordinary differential equations:

% =14+y? (first-order) [nonlinear]

Z Y+ +y = 3 cos(x) (second-order) [linear, nonhomogeneous]
3

d—% + 3—X 5y =0 (third-order) [linear, homogeneous]

dx*

Example 1.2 Here are some partial differential equations:

Ou _ Ou

5= & (first-order in x and y)

g’; =c? gxlz‘ (first-order in ¢; second-order in x)
ou + Pu _ =0 (second-order in x and y)

ax’ " 9y Y

Pu _ 3 (second-order)

axay

Solutions of Differential Equations

Definition 1.3. 7o say that y = g(x) is a solution of the differential equation

dy dy) 0

F(x’ Yax T ae

on an interval I means that
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F(x, gx), £ (%), ..., 8"(x) =0

for every choice of x in the interval 1. In other words, a solution, when substituted
into the differential equation, makes the equation identically true for x in I.

Example 1.3 The function y = e is a solution of the differential equation y’+y = 0,
because y +y = —e™* + e¢™* = 0 for all x. o

To have Mathematica verify this for you, conduct this dialog in an active Mathe-
matica window:

In[2]:

I

Clear([x, y, al

In[3]:= y[x_] = Exp[-x]
out [3]= e™*

In[4]:= y'[x] +y[x] ==0
Out [4]= True

The True that Mathematica returned indicates that y’(x) + y(x) = 0 (always), and
hence we indeed have a solution. It is not necessary to Clear variables regularly, but
if you get some unusual behavior, C1ear the names involved, re-define them, and try
the calculation again. Mathematica remembers definitions you may have forgotten,
and these may interfere with a subsequent calculation.

Here are other examples of solutions of ordinary differential equations. They are
from the notebook Solutions of DE’s. You should execute ideas such as these yourself
in Mathematica.

In[5]:= y[x_] = c Exp [%?]

OQut[5]= caexz

In[6]:= Simplify[y’[x] - 2xy[x] == 0]
out [6]

True
In[7]:= Clearly]

In[8]:= y[t_]1 =cl Sin[at] +c2 Cos[at]
Out [8]= c2 Cos[at] +cl Sin[at]

In[9]:= Simplify[y”[t] +a’y[t] == 0]
Out [9]= True

Direction Fields and Solutions

The solutions of the first-order differential equation dy/dx = f(x, y) can be repre-
sented nicely by a picture. Given a point P = (x,y), the differential equation tells
what the slope of the tangent line to a solution is at the point P. If m is such a slope
then the differential equation says that

d
m= 2l =P = fey,
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Fig. 1.1. A portion of the direction field of dy/dx = (3/2) — 3y + e~3¥2,

The idea of a direction field is similar to that of a vector field, where f(x, ), instead
of giving a vector that is to be associated with (x, y), gives a slope that is to be associ-
ated with (x, y). If representatives of these slopes are indicated on a graph at enough
points, some visual indication of the behavior of the solutions of the differential
equation is suggested.

For example, in Figure 1.1 we have plotted some representative members of the
direction field associated with the differential equation dy/dx = (3/2) — 3y + e™3¥2,
Then in Figure 1.2 some solutions of the differential equation are superimposed on
the direction field. Notice how the direction field gives a sense of the behavior of
the solutions. Solutions may be close together, but they do not cross. You may use
the notebook Direction Field Example to produce similar pictures. These can help
you understand the behavior of the solutions of any differential equation that has the
form dy/dx = f(x, y).

How Many Solutions Are There?

Once we understand that some differential equations have solutions, it is natural to
ask several questions. How many solutions can a given differential equation have?
(In general there are many; they may be easy or extremely difficult to find.) When
there are many solutions to choose from, is it possible to select one or more having
certain properties? When, if ever, is there exactly one solution having the properties
we want?



