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PREFACE

Through its objective, scope, and approach, this book offers a systematic
view to the dynamics of microelectromechanical systems (MEMS). While pro-
viding an in-depth look at the main problems that involve reliable modeling,
analysis, and design, the main focus of this book is the mechanical/structural
micro domain, which is at the core of most MEMS. Although not designed for
a specific course, the book could be used as a text at the upper-undergraduate/
graduate level, and, as such, it contains numerous fully solved examples as
well as many end-of-the-chapter proposed problems whose comprehensive
solutions can be accessed/downloaded from the publisher’s website by the
qualified instructor. At the same time, it is hoped that this book might be use-
ful to the researchers, professionals, and academics involved with modeling/
designing mechanically based MEMS.

This text is a continuation of the book Mechanics of Microelectro-
mechanical Systems by Lobontiu and Garcia (Kluwer Academic Publishers,
2004), and therefore it relies on the elements developed in its precursor, such
as compliance/stiffness formulations for microcantilevers, microhinges, micro-
bridges, and microsuspensions, as well as on the treatment given to means of
actuation and sensing. However, an effort has been made to ensure that this
book is self-contained as much as possible.

The material is structured into four parts (conventionally named chapters),
which are briefly discussed here. Each chapter contains exposition of the
theory that is necessary to developing topics specific to that part. Chapter 1
studies the bending and torsion resonant responses of microcantilevers
and microbridges by employing the distributed-parameter approach and the
Rayleigh’s quotient approximate method, which provides means for direct
derivation of the resonant frequencies. Lumped-parameter modeling, which
enables calculation of the above-mentioned resonant frequencies via the equi-
valent stiffness and inertia properties, is also used. Several microcantilever
and microbridge configurations are analyzed, and closed-form equations are
provided for the bending and torsional resonant (natural) frequencies by taking
into account the number of profiles that longitudinally define the member,
the number of layers in a cross-section, and the type of cross-section (either
constant or variable). Designs that contain circular perforations are also ana-
lyzed together with configurations that contain externally attached matter
whose quantity and position alter the main resonant frequencies.

Chapter 2 analyzes the resonant/modal response of more complex micro-
mechanical systems by considering their components are either inertia or
spring elements. The lumped-parameter modeling approach is applied to derive
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the free vibratory response of micromechanical systems that behave as either
single degree-of-freedom (DOF) ones, or as multiple DOF systems—in case
they undergo more complex vibratory motion and/or are composed of several
mass elements. Lagrange’s equations are employed in modeling the free res-
ponse of multiple DOF micromechanical systems. Numerous examples of
mass-spring microsystems undergoing linear or/and rotary resonant vibrations
are presented.

Chapter 3 addresses the main mechanisms responsible for energy losses
in MEMS. Quality factors and corresponding viscous damping coefficients
are derived owing to fluid—structure interaction (as in squeeze- and slide-film
damping), anchor (connection to substrate) losses, thermoelastic damping
(TED), surface/volume losses and phonon-mediated damping.

Chapter 4 discusses MEMS by taking into account the forcing factor and
therefore the forced response is analyzed. For harmonic (sinusoidal, co-
sinusoidal) excitation, the frequency response is modeled by quantifying the
amplitude and phase shift over the excitation frequency range. The Laplace
transform and the cosinusoidal transfer function approach are employed in
analyzing topics such as transmissibility, coupling, mechanical-electrical ana-
logies, as well as applications such as microgyroscopes and tuning forks. For
non-harmonic excitation, the time response of MEMS is studied by means
of the Laplace transform, the state-space approach and time stepping
schemes. Nonlinear problems, such as those generated by large deformations
are also discussed, and dedicated modeling/solution methods such as time-
stepping schemes or the approximate iteration method are presented. All
the solutions for the problems that appear at the ends of the chapters can
be accessed at http://www.springer.com/west/home/generic/search/results?-
SGWID=4-40109-22-173670220-0 by a qualified instructor.

Although many applications in this text qualify as nano devices, the prefix
micro has been utilized throughout, with the understanding that both the micro
and nano domains are covered by the generic denomination of microelectro-
mechanical systems. Particular care has been paid to the accuracy of this text,
but it is possible that unwanted errors have slipped in, and [ would be extremely
grateful for any related signal.

In closing, I would like to address my sincere thanks to Alex Greene,
Springer Editorial Director of Engineering, for all the positive interaction,
support, and profound comprehension of this project.

Anchorage, Alaska
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Chapter 1

MICROCANTILEVERS AND MICROBRIDGES:
BENDING AND TORSION RESONANT
FREQUENCIES

1.1 INTRODUCTION

Microcantilevers and microbridges are the simplest mechanical devices that
operate as standalone systems in a variety of microelectromechanical systems
(MEMS) applications, such as nano-scale reading/writing in topology detection/
creation, optical detection, material properties characterization, resonant sens-
ing, mass detection, or micro/nano electronic circuitry components such as
switches or filters.

This chapter studies the bending and torsion resonant responses of micro-
cantilevers (fixed-free flexible members) and microbridges (fixed-fixed flexible
members) by mainly utilizing the distributed-parameter approach and the
related Rayleigh’s quotient approximate method, which enable direct deriva-
tion of the resonant frequencies. The lumped-parameter modeling, which
permits separate calculation of equivalent stiffness and inertia properties en
route of obtaining the above-mentioned resonant frequencies, is also used in
this chapter for certain configurations.

Structurally, microcantilevers and microbridges can be identical, it is only
the boundary conditions that differentiate them, and this is the reason the two
members are discussed together in this chapter. The configuration of a parti-
cular microcantilever or microbridge is a combination of three features, namely:
number of profiles that longitudinally define the member (there can be a
single profile [geometric curve], or multiple profiles [case in which there is a
series connection between various single-profile segments]), number of layers
in a cross-section (there can be single-layered, homogeneous members or
multi-layer [sandwich] ones), and the type of cross-section (either constant or
variable). These variables are illustrated in Figure 1.1 as a three-dimensional
(3D) space. Because each of the three variables can take one of two possible
values, eight different configuration classes are possible by combining all
possible variants (in Figure 1.1 these categories are represented by the cube’s
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vertices). The origin of the 3D space, which is one specific design category,
is defined by the parameters SL, SP, and CCS, and represents the subclass of
microcantilevers/microbridges that is made of a single layer (SL). Their
geometry (width) is defined by a single profile (one geometric curve—SP),
and are of constant cross-section. This particular combination results in a
homogeneous, constant cross-section member, one of the simplest and most
used cantilevers/bridges. The other seven subclasses (corresponding to the
remaining cube vertices in Figure 1.1) can simply be described in a similar
manner.

type of
cross-section

L

, W

VCS

number of
layers

J/

number of CCS | Sl
profiles

MP sp SL

Figure 1.1 Three-dimensional space characterizing the geometric and material parameter
categories that define microcantilevers/microbridges (SL, single layer; ML, multiple layer; SP,
single profile; MP, multiple profile; CCS, constant cross-section; V'CS, variable cross-section)

Figure 1.2 Constant cross-section microcantilever: dimensions and degrees of freedom
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The assumption will be used in this chapter that variable cross-section (VCS)
micromembers are of constant thickness and of variable width, assumption
which is consistent with the usual microfabrication procedures.

Figures 1.2 and 1.3 show a microcantilever and a microbridge, respectively,
both of constant rectangular cross-sections. As shown in Figure 1.2, a micro-
cantilever is a fixed-free member, whose reference frame (which monitors
the out-of-the-plane bending about the z-axis, and torsion about the x-axis) is
placed at the free end where both bending and torsion deformations are
maximum. A microbridge is a fixed-fixed member, as illustrated in Figure 1.3,
and the reference frame can be located either at one fixed end or at its midpoint.
The maximum deformations are taking place at the microbridge’s midpoint.

midpoint

Figure 1.3 Constant cross-section microbridge: dimensions and degrees of freedom

The topic of detecting and evaluating the amount of substance that attaches
to MEMS structures by monitoring the shift in the bending and torsion reso-
nances of microcantilevers and microbridges is approached in Section 1.5.

1.2 MODAL ANALYTICAL PROCEDURES

Calculating the modal or resonant response of flexible structures can be per-
formed by means of analytical and numerical methods. Numerical procedures,
of which the finite element method (which is not addressed here) is the most
popular, are versatile and yield precise solutions for problems that are des-
cribed by partial differential equations with complex boundary conditions
and geometric shapes. Although the method of choice in both academia
and industry, for structures with relatively simple geometry and boundary
conditions, such as microcantilevers and microbridges, the finite element
method can be supplemented by simpler analytical models that are based on
closed-form solutions and that offer the advantage of faster processing times.
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Analytical procedures dedicated to evaluating the resonant response of elastic
members comprise distributed-parameter methods and lumped-parameter
methods. In a modal analysis, the distributed-parameter approach studies
vibrating elastic structures by considering the time response of all points
of the structure, and therefore by assuming the system’s properties are dis-
tributed over the entire structure. Lumped-parameter approaches, on the other
hand, consider that the system’s properties are concentrated (lumped) at con-
venient locations and focus on the dynamic behavior at those selected locations.
Small deformations of the elastic members will be assumed in this chapter,
which will result in linear models.

1.2.1 Rayleigh’s Quotient Method

Rayleigh’s quotient method (Timoshenko [1], Thomson [2], Rao [3]) is a
distributed-parameter procedure enabling calculation of various resonant
frequencies of freely vibrating elastic structures. In the case of conservative
systems, the method starts from the equality between the maximum Kkinetic
energy and maximum potential energy:

T;nax = Umax (] : 1)

The next assumption is the one considering the harmonic motion of a
vibrating component, according to which the deformation at a given point of
the structure is a product between a spatial function and a time-dependent
one:

u(x,t) =u(x)sin(wt) (1.2)

where the deformation can be produced through bending, axial, or torsional
free vibrations. The next step into Rayleigh’s quotient approach is assuming
a certain distribution of the elastic deformation u (x). By combining all these
steps yields the resonant frequency of interest. This method will be discussed
in the following sections with reference to bending and torsional vibrations
only.

1.2.1.1 Bending
In out-of-the-plane bending of single-component MEMS, such as the micro-

cantilever and the microbridge illustrated in Figures 1.2 and 1.3, the Kinetic
energy is:

L dJouenT , p ou_(x,1) |
T_2;[[—@t } dm =2 /J‘A(x)[—at } dx (1.3)
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where u, (x,?) is the deflection at an arbitrary point x on the microcantilever
(microbridge) and time moment . The member’s length is /, its cross-
sectional area (potentially variable) is denoted by 4(x), and the mass density
is p.

The elastic potential energy stored in a bent member is:

:_ﬁg({ﬁiﬂiq dx (1.4)
Ox

where E is the elasticity (Young’s) modulus and /,(x) is the cross-sectional
moment of area with respect to the y-axis (see Figures 1.2 and 1.3). By
considering the assumption:

u_(x,t)=u_(x)sin(wt) (1.5)

the maximum Kkinetic energy and maximum elastic potential energy that
result from Equations (1.3) and (1.4)—corresponding to values of 1 (one) for
the involved sine and cosine factors—are substituted into Equation (1.1),
which yields the square of the bending resonant frequency:

IEY( )[a%’(x)} dx
w, = (1.6)
IpA(x)uZ (x)’dx

The deflection u. (x), which is measured at an arbitrary point along the beam
and is positioned at a distance x from the origin (as already mentioned, the
origin is the free end for a cantilever and either one fixed end or the midpoint
for a bridge), is related to the maximum deflection u, by means of a bending
distribution function as:

u (x)=u,f,(x) (1.7)

By combining Equations (1.6) and (1.7), the bending resonant frequency can
be reformulated as:

ﬁv({fﬁ”qc&
w, = (1.8)
[pACOf (x) dx
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Equations (1.6) and (1.8) are two forms of Rayleigh’s quotient corresponding
to bending under the assumption the cross-section is variable.

1.2.1.2 Torsion
Rayleigh’s quotient method can also be applied to torsion problems involv-

ing microcantilevers and microbridges. The kinetic energy of a variable rect-
angular cross-section rod, for instance, is expressed as:

:l J‘I()W(.)C)t(x)l:W'(x)z +Z()C)2] l:agx(x’t)jlz d (l 9)
2 .

12 ot

li

where the cross-section’s width w and thickness ¢ are assumed variable
across the member’s length. The torsion angle 6.(x,r) is measured at an
arbitrary abscissa x and time moment ¢.

The elastic potential energy is:

_—IGI( ){6‘9 (; I)} dx (1.10)

where /;(x) is the torsion moment of area of the member’s cross-section. By
considering the torsional angle is defined as:

6.(x,1) =0, (x)sin(wr) (1.11)

and by also equalizing the maximum kinetic energy to the maximum potential
energy the torsion resonant frequency is calculated as:

12le( )[ded(x)} dx

" Towor Wy 1) |8,

(1.12)

The following relationship is considered relating the torsion angle at an
arbitrary abscissa, ¢, (x) and the maximum (reference) torsion angle 6,:

0.(x) = 6,f,(x) (1.13)

where f; (x) is the torsion distribution function. By substituting Equation
(1.13) into Equation (1.12), the torsion resonant frequency becomes:
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12 /j GI, (x){i;{ix—)} dx

" Towr@[wixy F1(x) | fi(x) dx

2
t

(1.14)

Again, Equations (1.12) and (1.14) express Rayleigh’s quotients for torsion.

It should be mentioned that Rayleigh’s quotient equations for bending
and torsion give the respective resonant frequency of a non-homogeneous,
variable cross-section member, irrespective of boundary conditions. The
boundary conditions decide the form of the bending and torsion distribution
functions, f; (x) and f; (x) over the member’s length. For microcantilevers and
microbridges the boundary conditions are different, and therefore the dis-
tribution functions are different as well. The distribution functions are also
dependent on the abscissa origin in the case of microbridges.

1.2.2 Lumped-Parameter Method

Rayleigh’s quotient method, as seen in the previous section, directly yields
the resonant frequency of interest, which is sufficient when this type of res-
ponse is solely needed. However, there are situations where the static or
quasi-static behavior of an elastic member is also of interest, and in such
cases the stiffness of that member at a specific location is necessary to use it
as a connector between the applied loads and resulting deformations.

An alternative to Rayleigh’s quotient distributed-parameter method to eva-
luating the resonant frequencies of flexible members is the lumped-parameter
method, which transforms the real, distributed-parameter properties—elastic
(stiffness) and inertial (mass or moment of inertia)—into equivalent, lumped-
parameter ones—+k, (equivalent stiffness), m, (equivalent mass), or J,
(equivalent mechanical moment of inertia)}—which are computed separately.
In doing so, one can use just the stiffness (for static applications) or both the
stiffness and inertia fractions (for modal calculations), because the resonant
frequency of interest is expressed as:

W} = (1.15)
m

In Equation (1.15), which is written for an elastic body whose equivalent
counterpart undergoes translational motion, , is the mass of that body. In
case the equivalent lumped body undergoes rotation, the mass of Equation
(1.15) is replaced by a mechanical moment of inertia .J,. The specifics of
determining the resonant frequencies corresponding to bending and torsion of
microcantilevers/microbridges by the lumped-parameter approach will be
discussed next.



