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Preface

Their memorials are covered by sand,

their rooms are forgotten.

But their names live on by the books they wrote,
for they are beautiful.

(Egyptian poem, 1500-1000 BC)

The theory of Bergman spaces experienced three main phases of development
during the last three decades.

The early 1970’s marked the beginning of function theoretic studies in these
spaces. Substantial progress was made by Horowitz and Korenblum, among others,
in the areas of zero sets, cyclic vectors, and invariant subspaces. An influential pre-
sentation of the situation up to the mid 1970’s was Shields’ survey paper “Weighted
shift operators and analytic function theory”.

The 1980°s saw the thriving of operator theoretic studies related to Bergman
spaces. The contributors in this period are numerous; their achievements were
presented in Zhu’s 1990 book “Operator Theory in Function Spaces”.

The research on Bergman spaces in the 1990’s resulted in several breakthroughs,
both function theoretic and operator theoretic. The most notable results in this
period include Seip’s geometric characterization of sequences of interpolation and
sampling, Hedenmalm’s discovery of the contractive zero divisors, the relationship
between Bergman-inner functions and the biharmonic Green function found by
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Duren, Khavinson, Shapiro, and Sundberg, and deep results concerning invari-
ant subspaces by Aleman, Borichev, Hedenmalm, Richter, Shimorin, and Sund-
berg.

Our purpose is to present the latest developments, mostly achieved in the
1990’s, in book form. In particular, graduate students and new researchers in
the field will have access to the theory from an almost self-contained and read-
able source.

Given that much of the theory developed in the book is fresh, the reader is
advised that some of the material covered by the book has not yet assumed a
final form.

The prerequisites for the book are elementary real, complex, and functional
analysis. We also assume the reader is somewhat familiar with the theory of
Hardy spaces, as can be found in Duren’s book “Theory of H" Spaces”, Gar-
nett’s book “Bounded Analytic Functions”, or Koosis’ book “Introduction to H®
Spaces”.

Exercises are provided at the end of each chapter. Some of these problems
are elementary and can be used as homework assignments for graduate students.
But many of them are nontrivial and should be considered supplemental to the
main text; in this case, we have tried to locate a reference for the reader.

We thank Alexandru Aleman, Alexander Borichev, Bernard Pinchuk, Kristian
Seip, and Sergei Shimorin for their help during the preparation of the book. We
also thank Anders Dahlner for assistance with the computer generation of three
pictures, and Sergei Treil for assistance with one.

January 2000 Haakan Hedenmalm
Boris Korenblum
Kehe Zhu
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1
The Bergman Spaces

In this chapter we introduce the Bergman spaces and concentrate on the general
aspects of these spaces. Most results are concerned with the Banach (or metric)
space structure of Bergman spaces. Almost all results are related to the Bergman
kernel. The Bloch space appears as the image of the bounded functions under the
Bergman projection, but it also plays the role of the dual space of the Bergman
spaces for small exponents (0 < p < 1).

1.1 Bergman Spaces

Throughout the book we let C be the complex plane, let
D={zeC:|z] <1}

be the open unit disk in C, and let
T={zeC:|z| =1}

be the unit circle in C. Likewise, we write R for the real line. The normalized
area measure on D will be denoted by dA. In terms of real (rectangular and polar)
coordinates, we have

1 1 .
dA(z) = —dxdy = —rdrdé, z=x+iy=ref.
JT b4

We shall freely use the Wirtinger differential operators

3 1(3 _a) 3 1(a+,a
—=-\—=i—), —=_\—+i—),
3z 2 \ax oy 9z 2 \ax ' 'y



2 1. The Bergman Spaces

where again z = x +iy. The first acts as differentiation on analytic functions, and
the second has a similar action on antianalytic functions.

The word positive will appear frequently throughout the book. That a function
f is positive means that f(x) > O for all values of x, and that a measure u is
positive means that «(E) > 0 for all measurable sets £. When we need to express
the property that f(x) > O for all x, we say that f is strictly positive. These
conventions apply — mutatis mutandis — to the word negative as well. Analogously,
we prefer to speak of increasing and decreasing functions in the less strict sense,
so that constant functions are both increasing and decreasing.

We use the symbol ~ to indicate that two quantities have the same behavior
asymptotically. Thus, A ~ B means that A/B is bounded from above and below
by two positive constants in the limit process in question.

For0 < p < 400 and —1 < «a < +o0, the (weighted) Bergman space
Al = AL(DD) of the disk is the space of analytic functions in L?(D, dA,), where

dAe(2) = (@ + D1 — |z])* dA(2).
If fisin LP(D,dAy), we write

1/p
1 fllpe= [/D lf(z)l"dAa(z)] ’

When 1 < p < 400, the space L?(D, dAy) is a Banach space with the above
norm; when O < p < 1, the space L?(ID, dA,) is a complete metric space with
the metric defined by

d(f.8) =IIf —glha-

Since d(f,g) = d(f — g,0), the metric is invariant. The metric is also p-
homogeneous, that is, d(Af, 0) = |A|Pd(f,0) for scalars A € C. Spaces of this
type are called quasi-Banach spaces, because they share many properties of the
Banach spaces.

We let L°°(DD) denote the space of (essentially) bounded functions on D. For
f € L°°(D) we define

| fllo = esssup {| f(2)] : z € D}.

The space L°°(D) is a Banach space with the above norm. As usual, we let H®
denote the space of bounded analytic functions in D. It is clear that H is closed
in L*°(D) and hence is a Banach space itself.

PROPOSITION 1.1 Suppose 0 < p < +00, —1 < a < 400, and that K is
a compact subset of D. Then there exists a positive constant C = C(n, K, p, @)
such that

sup[lf(")(z)l ze K} <Clfle

forall f € Al andalln =0,1,2,....1In particular, every point-evaluation in D
is a bounded linear functional on A%.
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Proof. Without loss of generality we may assume that
K={zeC:lz| <r}

for some r € (0, 1). We first prove the result for n = 0.
Let o = (1 —r)/2 and let B(z, o) denote the Euclidean disk at z with radius
o . Then by the subharmonicity of | f|?,

1
D" 2= | f(w)|? dA(w)
0° JB(z.0)

for all z € K. It is easy to see that for all z € K we have
-z 21—zl = (1 =r)/2.

Thus, we can find a positive constant C (depending only on r) such that

Iﬂ@WﬁC[

B(z.0)

| f(w)|P dAg(w) < C[D | f(w)|?P dAg(w)

for all z € K. This proves the result for n = 0.

By the special case we just proved, there exists a constant M > 0 such that
[ fO <M| fllpoforall || = R, where R = (1 +r)/2. Now if z € K, then by
Cauchy’s integral formula,

! d
f(n)(z):n_/ f()dg

21i Jig1=r (¢ — )"

It follows that
n!'MR
IfP@ = —27 1 lpa

forallz € K and f € AL. n

As a consequence of the above proposition, we show that the Bergman space
Al is a Banach space when 1 < p < 400 and a complete metric space when
O0<p<l.

PROPOSITION 1.2 Forevery0 < p < +00and —1 < a < 400, the weighted
Bergman space AL is closed in LP(D, d Ay).

Proof. Let {f,}, be a sequence in AZ and assume f, — f in LP(D, dA,).
In particular, { f,}, is a Cauchy sequence in L? (D, dAy). Applying the previous
proposition, we see that { f,,},, converges uniformly on every compact subset of ID.
Combining this with the assumption that f, — f in L?(D, dA,), we conclude
that f,(z) — f(z) uniformly on every compact subset of D). Therefore, f is
analytic in D and belongs to AZ. ]

In many applications, we need to approximate a general function in the Bergman
space A% by a sequence of “nice” functions. The following result gives two
commonly used ways of doing this.
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PROPOSITION 1.3 For an analytic function f inDand 0 < r < 1, let f, be
the dilated function defined by f,(z) = f(rz), z € D. Then

(1) Forevery f € AL, we have Il fr = fllpa—>0asr —17.

(2) For every f € AL, there exists a sequence {pp}, of polynomials such that
lpn = flipe = 0asn — +o0.

Proof. Let f be a function in AS. To prove the first assertion, let § be a number
in the interval (0, 1) and note that

/le,(w—f(z)["dAa(z) . /H @) = FOI 48
+[5 O 7@) 4.

Since f isin L?(D, dA,), we can make the second integral above arbitrarily small
by choosing § close enough to 1. Once § is fixed, the first integral above clearly
approaches Oasr — 1.

To prove the second assertion, we first approximate f by f, and then
approximate f, by its Taylor polynomials. |

Although any function in A2 can be approximated (in norm) by a sequence of
polynomials, it is not always true that a function in A2 can be approximated (in
norm) by its Taylor polynomials. Actually, such approximation is possible if and
only if 1 < p < +400; see Exercise 4.

We now turn our attention to the special case p = 2. By Proposition 1.2 the
Bergman space A:“; is a Hilbert space. For any nonnegative integer 7, let

F'h+2+ )
n(2) = | ——= 7", D.
en(2) | nlT@+w ° 5

Here, I'(s) stands for the usual Gamma function, which is an analytic function of s
in the whole complex plane, except for simple poles at the points {0, —1, —2, ... }.
It is easy to check that {e,}, is an orthonormal set in Ai. Since the set of poly-
nomials is dense in Ag, we conclude that {e, }, defined above is an orthonormal
basis for Aé. It follows that if

0 +00
f() = Za,,z" and g(2) = anz"
n=0 n=0

are two functions in A2, then

i") n!' T2+ )

2
Tt 2ta)

I£13 =

n=0
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and

i“ nrfrR+a) -

(fvg>a:n=0 F(n+2+a) nOn,

where (-, -)¢ 1s the inner product in Ag inherited from L2(D, dAg).

PROPOSITION 14 For —1 < o < +00, let Py be the orthogonal projection
from L*(D, dAy) onto A:—;. Then

f(w)dAgq(w)

L (=)t zeD,

Paf(Z) =
forall f € L*(D,dAy).

Proof. Let {e,}, be the orthonormal basis of Ag defined a little earlier. Then
for every f € L%(D, dA,) we have

+00
P, f = Z(Pafy €n)a €n
n=0
In particular,

+00
Pofei =D (Paf eduen®)
n=0

for every z € D and the series converges uniformly on every compact subset of ID.
Since

(Po f.en)a = (f, Puen)e = ([ €n)as

we have

+00
P.f(2) Z M

o [ fenemr dasw)

n=0
+°°F(n+2+(x) .,
/f( )LO TG+ )(w)}dAa(u»

fw)dAqy(w)
D (1 _ Zw)2+cx °

The interchange of integration and summation is justified, because for each fixed
z € D, the series

+i:'°“n+2+a)

< nIT2 +a) (zw)

converges uniformly in w € D. o
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The operators P, above are called the (weighted) Bergman projections on D.
The functions

1
(1 . Zﬁ)—)2+a 2
are called the (weighted) Bergman kernels of D). These kernel functions play an
essential role in the theory of Bergman spaces.

Although the Bergman projection P, is originally defined on L?*(D, dA,), the
integral formula

Ky(z, w) = z,weD,

f(w)dAq(w)
D (1- Zw)2+a

Py f(2) =

clearly extends the domain of P, to L!(D, dA,). In particular, we can apply P,
to a function in L? (D, dA,) whenever 1 < p < +o0.
If £ is a function in A2, then P, f = f, so that

[ f(w)dAg(w)

= bz <P

f(@

Since this is a pointwise formula and A2 is dense in A}, we obtain the following.
COROLLARY 1.5 If f is a function in A},, then

_ [ f(w)dAs(w)
~Jp (1 —zw)*te

and the integral converges uniformly for z in every compact subset of D.

f@ : zeD,

This corollary will be referred to as the reproducing formula. The Bergman
kernels are special types of reproducing kernels.

On several occasions later on theorems will hold only for the unweighted
Bergman spaces. Thus, we set A? = A(’)’ and call them the ordinary Bergman
spaces. The corresponding Bergman projection will be denoted by P, and the
Bergman kernel in this case will be written as

1

Hew =i ar

The Bergman kernel functions are intimately related to the Mdbius group
Aut (D) of the disk. To see this, let z € D and consider the Mbius map ¢, of
the disk that interchanges z and 0,

I—w

(w) = w e D.

1—7Zw’
We list below some basic properties of ¢,, which can all be checked easily.
PROPOSITION 1.6 The Mobius map ¢, has the following properties:

(1) ;' =g,
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2 _ (-2

(2) The real Jacobian determinant of ¢, at w is I(p;(w)l 1= zmp

=1z — |w]? )
- [1 — zw|?

(3) 1— g, (w)|?

As a simple application of the properties above, we mention that the formula
for the Bergman kernel function K, (z, w) can be derived from a simple change of
variables, instead of using an infinite series involving the Gamma function. More
specifically, if f € Aé, then the rotation invariance of d A, gives

ﬂ®=AfWMMWL

Replacing f by f o ¢, making an obvious change of variables, and applying
properties (2) and (3) above, we obtain

f@)=- Izl2)2+°‘/ S
p (1

- wZ)2+°‘(1 - Zw)2+a'

Fix z € D, and replace f by the function w — (1 — wz)2te f(w). We then arrive
at the reproducing formula

f(w)
f()—/(1 _)2+adAa(w), zeD,

for f € Al. From this we easily deduce the integral formula for the Bergman
projection Py, .

1.2 Some LP Estimates

Many operator-theoretic problems in the analysis of Bergman spaces involve esti-
mating integral operators whose kernel is a power of the Bergman kernel. In this
section, we present several estimates for integral operators that have proved very
useful in the past. In particular, we will establish the boundedness of the Bergman
projection P, on certain L? spaces.

THEOREM 1.7 Forany —1 < a < +00 and any real B, let

(1 — |w|?)®
Iy p(2) = / = ——|2+a+ﬁ dA(w), zeD,

and

n do
Jg(2) = — D.
ﬂ(Z) '/(; [1— Ze—16|1+f3 Chs



