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Preface

The origins of geometry are lost in the mists of ancient history, but geometry
was already the preeminent area of Greek mathematics over 20 centuries ago.
As such, it became the primary subject of Euclid’s Elements. Elements was the
first major example of a formal axiomatic system and became a model for
mathematical reasoning. However, the eventual discoveries of non-Euclidean
geometries profoundly affected both mathematical and philosophical under-
standing of the nature of mathematics. The relation between Euclidean and
non-Euclidean geometries became apparent with the development of projec-
tive geometry—a geometry with origins in artists’ questions about
perspective.

This interesting historical background and the major philosophical ques-
tions raised by developments in geometry are virtually unknown to current
students, who often view geometry as a dead subject full of two-column proofs
of patently clear results. It is no surprise that Mary Kantowski, in an article
entitled “Impact of Computing on Geometry,” has called geometry “the most
troubled and controversial topic in school mathematics today” (Fey, 1984,
p. 31). However, this and many other recent articles provide evidence for an
increasing realization that the concepts and methods of geometry are
becoming more important than ever in this age of computer graphics. The
geometry of the artists, projective geometry, has become the tool of computer
scientists and engineers as they work on the frontiers of CAD/CAM
(computer-aided design/computer-aided manufacturing) technology.

The major emphasis of this text is on the geometries developed after Euclid’s
Elements (circa 300 B.C.). In addition to the primary goal of studying these
“newer” geometries, this study provides an excellent opportunity to explore
aspects of the history of mathematics. Also, since algebraic techniques are
frequently used, this study demonstrates the interaction of several areas of
mathematics and serves to develop geometrical insights into mathematical
results that previously appeared to be completely abstract in nature.

Since Euclid’s geometry is historically the first major example of an
axiomatic system and since one of the major goals of teaching geometry in
high school is to expose students to deductive reasoning, Chapter 1 begins

vii
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with a general description of axiomatic (or deductive) systems. Following this
general introduction, several finite geometries are presented as examples of
specific systems. These finite geometries not only demonstrate some of the
concepts that occur in the geometries of Chapters 2 through 4 but also indicate
the breadth of geometrical study.

In Chapter 2, Euclid’s geometry is first covered in order to provide historical
and mathematical preparation for the major topic of non-Euclidean geome-
tries. This brief exposure to Euclid’s system serves both to recall familiar
results of Euclidean geometry and to show how few substantial changes have
occurred in Euclidean geometry since Euclid formulated it. The non-
Euclidean geometries are then introduced to demonstrate that these geome-
tries, which appear similar to Euclidean geometry, have properties that are
radically different from comparable Euclidean properties.

The beginning of Chapter 3 serves as a transition from the synthetic
approach of the previous chapters to the analytic treatment contained in the
remainder of this chapter and the next. There follows a presentation of Klein’s
definition of geometry, which emphasizes geometrical transformations. The
subsequent study of the transformations of the Euclidean plane begins with
isometries and similarities and progresses to the more general transformations
called affinities.

By using an axiomatic approach and generalizing the transformations of the
Euclidean plane, Chapter 4 offers an introduction to projective geometry and
demonstrates that this geometry provides a general framework within which
the geometries of Chapters 2 and 3 can be placed.

Although the text ends here, mathematically the next logical step in this
process is the study of topology, which is usually covered in a separate course.

This text is designed for college-level survey courses in geometry. Many of
the students in these courses are planning to pursue secondary-school
teaching. However, with the renewed interest in geometry, other students
interested in further work in mathematics or computer science will find the
background provided by these courses increasingly valuable. These survey
courses can also serve as an excellent vehicle for demonstrating the relation-
ships between mathematics and other liberal arts disciplines. In an attempt to
encourage student reading that further explores these relationships, each
chapter begins with a section that lists suggested bibliographic sources for
relevant topics in art, history, applications, and so on. I have found that
having groups of students research and report on these topics not only
introduces them to the wealth of expository writing in mathematics but also
provides a way to share their acquired insights into the liberal arts nature of
mathematics.

The material contained in this text is most appropriate for junior or senior
mathematics majors. The only geometric prerequisite is some familiarity with
the most elementary high-school geometry. Since the text makes frequent use
of matrix algebra and occasional references to more general concepts of linear
algebra, a background in elementary linear algebra is helpful. Because the text
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introduces the concept of a group and explores properties of geometric
transformations, a course based on this text provides excellent preparation for
the standard undergraduate course in abstract algebra.

I am especially grateful for the patient support of my husband and the
general encouragement of my colleagues in the St. Olaf Mathematics
Department. In particular, I wish to thank our department chair, Theodore
Vessey, for his support and our secretary, Donna Brakke, for her assistance. |
am indebted to the many St. Olaf alumni of Math 80 who studied from early
drafts of the text and to Charles M. Lindsay for his encouragement after using
preliminary versions of the text in his courses at Coe College in Cedar Rapids,
Iowa. Others who used a preliminary version of the text and made helpful
suggestions are Thomas Q. Sibley of St. John’s University in Collegeville,
Minnesota, and Martha L. Wallace of St. Olaf College. I am also indebted to
Joseph Malkevitch of York College of the City University of New York for
serving as mathematical reader for the text, and to Christina Mikulak for her
careful editorial work.

Judith N. Cederberg
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CHAPTER 1

Axiomatic Systems and Finite
Geometries

1.1. Gaining Perspective

Finite geometries were developed in the late 19th century, in part to
demonstrate and test the axiomatic properties of “completeness,” “consis-
tency,” and “independence.” They are introduced in this chapter to fulfill this
historical role and to develop both an appreciation for and an understanding
of the revolution in mathematical and philosophical thought brought about
by the development of non-Euclidean geometry. In addition, finite geometries
provide relatively simple axiomatic systems in which we can begin to develop
the skills and techniques of geometric reasoning. The finite geometries
introduced in Sections 1.3 and 1.5 also illustrate some of the fundamental
properties of non-Euclidean and projective geometry.

Even though finite geometries were developed as abstract systems, math-
ematicians have applied these abstract ideas in designing statistical experi-
ments using Latin squares and in developing error-correcting codes in
computer science. Section 1.4 develops a simple error-correcting code and
shows its connection with finite projective geometries. The application of finite
affine geometries to the building of Latin squares is equally intriguing. Since
Latin squares are clearly described in several readily accessible sources, the
reader is encouraged to explore this topic by consulting the resources listed at
the end of this chapter.

1.2. Axiomatic Systems

The study of any mathematics requires an understanding of the nature of
deductive reasoning, and geometry has been singled out for introducing this
methodology to secondary-school students. There are important historical
reasons for choosing geometry to fulfill this role, but these reasons are seldom
revealed to secondary-school initiates. This section introduces the termi-
nology essential for a discussion of deductive reasoning so that the extraordi-

1



2 Chapter 1. Axiomatic Systems and Finite Geometries

nary influence of the history of geometry on the modern understanding of
deductive systems will become evident.

Deductive reasoning takes place in the context of an organized logical
structure called an axiomatic (or deductive) system. Such a system consists of
the following components:

Undefined terms.
Defined terms.
Axioms.

A system of logic.
Theorems.

AP S R

Undefined terms are included since it is not possible to define all terms without
resorting to circular definitions. In geometrical systems these undefined terms
frequently, but not necessarily, include “point,” “line,” “plane,” and “on.”
Defined terms are not actually necessary, but in nearly every axiomatic system
certain phrases involving undefined terms are used repeatedly. Thus it is more
efficient to substitute a new term, that is, a defined term, for each of these
phrases whenever they occur. For example, in Euclidean geometry we
substitute the term “parallel lines” for the phrase “lines which do not
intersect.” Furthermore, it is impossible to prove all statements constructed
from the defined and undefined terms of the system without circular reasoning,
just as it is impossible to define all terms. So an initial set of statements is
accepted without proof. The statements that are accepted without proof are
known as axioms. From the axioms, other statements can be deduced or
proved using the rules of inference of a system of logic (usually Aristotelian).
These latter statements are called theorems.

As noted earlier, the axioms of a system must be statements constructed
using the terms of the system. But they cannot be arbitrarily constructed since
an axiom system must be consistent.

Definition 1.1. An axiomatic system is said to be consistent if there do not exist
in the system any two axioms, any axiom and theorem, or any two theorems
that contradict each other.

It should be clear that it is essential that an axiomatic system be consistent
since a system in which both a statement and its negation can be proved is
worthless. However, it soon becomes evident that it would be difficult to verify
consistency directly from this definition since all possible theorems would have
to be considered. Instead, models are used for establishing consistency. A
model of an axiomatic system is obtained by assigning interpretations to the
undefined terms so as to convert the axioms into true statements in the
interpretations. If the model is obtained by using interpretations that are
objects and relations adapted from the real world, we say we have established
absolute consistency. In this case, statements corresponding to any con-
tradictory theorems would lead to contradictory statements in the model, but
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contradictions in the real world are supposedly impossible. On the other hand,
if the interpretations assigned are taken from another axiomatic system, we
have only tested consistency relative to the consistency of the second
axiomatic system; that is, the system we are testing is consistent only if the
system within which the interpretations are assigned is consistent. In this
second case, we say we have demonstrated relative consistency of the first
axiomatic system. Because of the number of elements in many axiomatic
systems, relative consistency is the best we are able to obtain. We illustrate the
use of models to determine consistency of the axiomatic system for four-point
geometry.

Axioms for Four-Point Geometry

Undefined Terms. Point, line, on.

Axiom 1. There exist exactly four points.

Axiom 2. Two distinct points are on exactly one line.
Axiom 3. Each line is on exactly two points.

Before demonstrating the consistency of this system, it may be helpful to
make some observations about these three statements, which will also apply to
other axioms in this text. Axiom 1 explicitly guarantees the existence of exactly
four points. However, even though lines are mentioned in Axioms 2 and 3, we
cannot ascertain whether or not lines exist until theorems verifying this are
proved since there is no axiom that explicitly insures their existence. This is
true even though in this system the proof of the existence of lines is almost
immediate. Axioms 2 and 3 like many mathematical statements are disguised
“if...then” statements. Axiom 2 should be interpreted as follows: If two
distinct points exist, then these two points are on exactly one line. Similarly,
Axiom 3 should be interpreted: If there is a line, it is on exactly two points. In
other axiomatic systems, we will discover that the axioms actually lead to
theorems telling us that there are many more points and/or lines than those
guaranteed to exist by the axioms.

Figure 1.1
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These observations suggest that the construction of any model for four-
point geometry must begin with the objects known to exist, that is, four points.
In model 1 these points are interpreted as the letters A, B, C, D whereas in
model 2 (see Fig. 1.1) these points are interpreted as dots. In continuing to
build either model, we must interpret the remaining undefined terms so as to
create a system in which Axioms 2 and 3 become true statements.

Model 1
Undefined Term Interpretation
Points Letters A, B, C, D
Lines Columns of letters given below
On Contains or is contained in
A A A B B C
B C D C D D
Model 2
Undefined Term Interpretation
Points Dots denoted 1, 2, 3, 4
Lines Segments illustrated in Fig. 1.1
On A dot is an endpoint of

a segment or vice versa

There are several other important properties that an axiomatic system may
possess.

Definition 1.2. An axiom in an axiomatic system is independent if it cannot be
proved from the other axioms. If each axiom of a system is independent, the
system is said to be independent.

Clearly an independent system is more elegant since no unnecessary
assumptions are made. However, the increased difficulty of working in an
independent system becomes obvious when we merely note that accepting
fewer statements without proof leaves more statements to be proved. For this
reason the axiomatic systems used in high-school geometry are seldom
independent.

The verification that an axiomatic system is independent is also done via
models. The independence of Axiom A in an axiomatic system S is established
by finding a model of the system S’ where S’ is the system obtained from S by
replacing Axiom A by a negation of A. Thus, to demonstrate that a system
consisting of n axioms is independent, n models must be exhibited—one for
each axiom. The independence of the axiomatic system for four-point
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geometry is demonstrated by the following three models, all of which interpret

points as letters of the alphabet and lines as the columns of letters indicated.

Models Demonstrating Independence of Axioms for
Four-Point Geometry

Model 11. A model in which a negation of Axiom 1 is true (i.e., there do not
exist four points):

Points Lines
A, B A
B

Since this model contains only two points, the negation of Axiom 1 is clearly
true and it is easy to show that Axioms 2 and 3 are true statements in this
interpretation.

Model 12. A model in which a negation of Axiom 2 is true (i.e., there are two
distinct points not on one line):

Points Lines
A, B,C, D A C
B D

Note that in this model there is no line on points A and C. What other pairs of
points fail to be on a line?

Model 13. A model in which a negation of Axiom 3 is true (i.e., there are lines
not on exactly two points):

Points Lines

A, B, C,D

A A B C
B D D D
C

In this model one line is on three points, whereas the remaining lines are each
on two points, so the negation of Axiom 3 is true in this interpretation.

Since we have demonstrated the independence of each of the axioms of four-
point geometry, we have shown that this axiomatic system is independent.
Another property that an axiomatic system may possess is completeness.

Definition 1.3. An axiomatic system is complete if every statement containing
undefined and defined terms of the system can be proved valid or invalid, or in
other words, if it is not possible to add a new independent axiom to the system.
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In general, it is impossible to demonstrate directly that a system is complete.
However, if a system is complete, there cannot exist two essentially different
models. This means all models of the system must be pairwise isomorphic.

Definition 1.4. Two models o« and f of an axiomatic system are said to be
isomorphic if there exists a one-to-one correspondence ¢ from the set of points
and lines of « onto the set of points and lines of f which preserves all relations.
In particular if the undefined terms of the system consist of the terms “point,”
“line,” and “incidence,” then ¢ must satisfy the following conditions:

1. For each point P and line [ in o, ¢(P) and ¢(l) are a point and line in f.
2. If P is incident with [, then ¢(P) is incident with ¢(l).

If all models of a system are pairwise isomorphic, it is clear that the models
must each have the same number of points and lines. Furthermore, if a new
independent axiom could be added to the system, there would be two distinct
models of the system: a model o in which the new axiom would be valid and a
model # in which the new axiom would not be valid. The models o and f could
not then be isomorphic. Hence if all models of the system are necessarily
isomorphic, it follows that the system is complete.

In the example of the four-point geometry, it is clear that models 1 and 2 are
isomorphic. The verification that all models of this system are isomorphic
follows readily once the following theorem is verified. (See Exercises 5 and 6.)

Theorem 1.1. There are exactly six lines in the four-point geometry.

Finally any discussion of the properties of axiomatic systems must include
mention of the important result contained in Godel’'s theorem. Greatly
simplified, this result says that any consistent axiomatic system comprehensive
enough to contain the results of elementary number theory is not complete.

EXERCISES

For Exercises 1-4, consider the following axiomatic system:
Axioms for Three-Point Geometry

Undefined Terms. Point, line, on.

Axiom 1. There exist exactly three points.

Axiom 2. Two distinct points are on exactly one line.

Axiom 3. Not all points are on the same line.

Axiom 4. Two distinct lines are on at least one common point.

1. (a) Prove that this system is consistent. (b) Did the proof in part (a)
demonstrate absolute consistency or relative consistency? Explain.

2. Is this system independent? Why?
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3. Prove the following theorems in this system: (a) Two distinct lines are on
exactly one point. (b) Every line is on exactly two points. (c) There are
exactly three lines.

4. Is this system complete? Why?
5. Prove Theorem 1.1.

6. Prove that any two models of four-point geometry are isomorphic.
Use the following definition in Exercises 7 and 8.

Definition. The dual of a statement p in the four-point geometry is obtained by
replacing each occurrence of the term “point” in p by the term “line” and each
occurrence of the term “line” in p by the term “point.”

7. Obtain an axiomatic system for four-line geometry by dualizing the axioms
for four-point geometry.

8. Verify that the dual of Theorem 1.1 will be a theorem of four-line geometry.
How would its proof differ from the proof of Theorem 1.1 in Exercise 5?

1.3. Finite Projective Planes

As indicated by the examples in the previous section, there are geometries
consisting of only a finite number of points and lines. In this section we will
consider an axiomatic system for an important collection of finite geometries
known as finite projective planes. These geometries may, at first glance, look
much like finite versions of plane Euclidean geometry. However, there is a very
important difference. In a finite projective plane, each pair of lines intersects;
that is, there are no parallel lines. This pairwise intersection of lines leads to
several other differences between projective planes and Euclidean planes. A
few of these differences will become apparent in this section; others will not
become evident until we study general plane projective geometry in Chapter 4.

Some of the first results in the study of finite projective geometries were
obtained by von Staudt in 1856, but it wasn’t until early in this century that
finite geometries assumed a prominent role in mathematics. Since ther, the
study of these geometries has grown considerably and there are still a number
of unsolved problems currently engaging researchers in this area.

Axioms for Finite Projective Planes
Undefined Terms. Point, line, incidence.

Defined Terms. Points incident with the same line are said to be collinear.
Lines incident with the same point are said to be concurrent.
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Axiom P1. There exist at least four distinct points, no three of which are
collinear.

Axiom P2. There exists at least one line with exactly n+ 1 (n> 1) distinct
points incident with it.

Axiom P3. Given two distinct points, there is exactly one line incident with
both of them.

Axiom P4. Given two distinct lines there is at least one point incident with
both of them.

Any set of points and lines satisfying these axioms is called a projective plane
of order n. Note that the word “incidence” has been used as the third undefined
term in this axiom system. The usage of this word rather than the word “on” is
more common in the study of general projective planes.

The consistency of this axiomatic system is demonstrated by either of the
following models which use the same interpretations as models 1 and 2 in
Section 1.2.

Model 1
Points Lines
A,B,C,D,E,F,G A A B A B C C
B D D F E D E
C EF G G G F
Model 2
Points Lines
Dots denoted 1,2,3,4,5,6,7 Segments illustrated in Fig. 1.2

Note that these models are projective planes of order two and both have
exactly three points on each line, but there are models with more than three
points on a line as shown by the next model.

Model 3

Points Lines

A,B,C,D,E, A A A A B BB C C C D D D

F,G,H,1,J, B E H K E F G E F G E F G

K,L.M C F 1 L HI J I J HJ H I
D G J M K L MM K L L MK

Whereas models 1 and 2 have three points on each line, three lines on each
point, and a total of seven points and seven lines, model 3 has four points on
each line, four lines on each point, and a total of 13 points and 13 lines. To



