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Preface

Today, a large body of work on microwave-assisted organic synthesis is available in
the published and patent literature. Close to one hundred review articles, several
books, and online databases already provide extensive coverage of the subject for the
specialist reader. The goal of the present book is to provide an introductory treatise
for beginners, a sort of “How To Get Started” guide. Apart from a few articles in the
Journal of Chemical Education, very little introductory and practical hands-on infor-
mation on controlled microwave chemistry has been presented in a textbook style
format.

This fact has prompted the publication of the present work “Practical Microwave
Synthesis for Organic Chemists — Strategies, Instruments, and Protocols” which serves
both the beginner and the more experienced microwave user. A major motivation for
writing this treatise has been the continuous and enthusiastic feedback obtained
from scientists during conferences and short courses on microwave synthesis
organized by the authors. In particular, the very popular MAOS conference series
organized since 2003, in combination with practical hands-on or classroom-style
training courses, has led to a collection of questions and comments from the
attendees and has stimulated the design and concept for this book. It has been
written mainly with the microwave novice in mind. Several chapters are specifically
designed for beginners, such as undergraduate or graduate students in academia, or
industrial scientists getting started in microwave-assisted organic synthesis.

Following a brief introduction (Chapter 1), Chapter 2 details the basic concepts of
microwave dielectric heating theory and provides insight into the current under-
standing of microwave effects. In Chapter 3 a comprehensive review of most of the
commercially available single-mode and multimode microwave reactors for organic
synthesis is presented. Chapter 4 provides an extensive overview of the different
microwave processing techniques that are available today, while Chapter 5 contains
many useful tips for the microwave novice, including a “Frequently Asked Ques-
tions” Section. The last chapter of the book (Chapter 6) contains a collection of
carefully selected and documented microwave experiments that may also be used by
scientists in academia to design a course on microwave-assisted organic synthesis.
All examples have been tested by advanced undergraduate students in the course of a
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special “Microwave Chemistry Lab Course” during the spring of 2007 at the
University of Graz.

Writing this book would have been impossible without considerable assistance
from all the members of the Christian Doppler Laboratory for Microwave Chemistry
(CDLMC) in Graz. All past and present members are acknowledged for their
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1
Microwave Synthesis — An Introduction

While fire is now rarely used in synthetic chemistry, it was not until Robert Bunsen
invented the burner in 1855 that the energy from this heat source could be applied to a
reaction vessel in a focused manner. The Bunsen burner was later superseded by the
isomantle, oil bath or hot plate as a source of applying heat to a chemical reaction. In
the past few years, heating chemical reactions by microwave energy has been an
increasingly popular theme in the scientific community. Since the first published
reports on the use of microwave irradiation to carry out organic chemical transfor-
mations by the groups of Gedye and Giguere/Majetich in 1986 [1], more than 3500
articles have been published in this fast moving and exciting field, today generally
referred to as microwave-assisted organic synthesis (MAOS) [2, 3]. In many of the
published examples, microwave heating has been shown to dramatically reduce
reaction times, increase product yields and enhance product purities by reducing
unwanted side reactions compared to conventional heating methods. The advantages
of this enabling technology have, more recently, also been exploited in the context of
multistep total synthesis [4] and medicinal chemistry/drug discovery [5], and have
additionally penetrated related fields such as polymer synthesis [6], material
sciences [7], nanotechnology [8] and biochemical processes [9]. The use of microwave
irradiation in chemistry has thus become such a popular technique in the scientific
community that it might be assumed that, in a few years, most chemists will probably
use microwave energy to heat chemical reactions on a laboratory scale. The statement
that, in principle, any chemical reaction that requires heat can be performed under
microwave conditions has today been generally accepted as a fact by the scientific
community.

The short reaction times provided by microwave synthesis make it ideal for rapid
reaction scouting and optimization of reaction conditions, allowing very rapid
progress through the “hypotheses—experiment-—results” iterations, resulting in more
decision points per unit time. In order to fully benefit from microwave synthesis one
has to be prepared to fail in order to succeed. While failure could cost a few minutes,
success would gain many hours or even days. The speed at which multiple variations
of reaction conditions can be performed allows a morning discussion of “What
should we try?” to become an after lunch discussion of “What were the results?” Not
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surprisingly, therefore, many scientists, both in academia and in industry, have
turned to microwave synthesis as a frontline methodology for their projects.

Arguably, the breakthrough in the field of MAOS on its way from laboratory
curiosity to standard practice started in the pharmaceutical industry around the year
2000. Medicinal chemists were among the first to fully realize the true power of this
enabling technology. Microwave synthesis has since been shown to be an invaluable
tool for medicinal chemistry and drug discovery applications since it often dramati-
cally reduces reaction times, typically from days or hours to minutes or even
seconds [5]. Many reaction parameters can therefore be evaluated in a few hours
to optimize the desired chemistry. Compound libraries can then be rapidly synthe-
sized in either a parallel or (automated) sequential format using microwave technol-
ogy [5]. In addition, microwave synthesis often allows the discovery of novel reaction
pathways, which serve to expand “chemical space” in general, and “biologically-
relevant, medicinal chemistry space”, in particular.

In the early days of microwave synthesis, experiments were typically carried out in
sealed Teflon or glass vessels in a domestic household microwave oven without any
temperature or pressure measurements [1]. Kitchen microwave ovens are not
designed for the rigors of laboratory usage: acids and solvents corrode the interiors
quickly and there are no safety controls. The results were often violent explosions due
to the rapid uncontrolled heating of organic solvents under closed vessel conditions.
In the 1990s several groups started to experiment with solvent-free microwave
chemistry (so-called dry-media reactions), which eliminated the danger of explo-
sions [10]. Here, the reagents were pre-adsorbed onto either a more or less microwave
transparent inorganic support (i.e., silica, alumina or clay) or a strongly absorbing one
(i.e., graphite), that additionally may have been doped with a catalyst or reagent.
Particularly in the beginning of MAOS, the solvent-free approach was very popular
since it allowed the safe use of domestic microwave ovens and standard open vessel
technology. While a large number of interesting transformations using dry-media
reactions have been published in the literature [10], technical difficulties relating to
non-uniform heating, mixing, and the precise determination of the reaction tem-
perature remained unsolved, in particular when scale-up issues needed to be
addressed.

Alternatively, microwave-assisted synthesis was, in the past, often carried out using
standard organic solvents under open vessel conditions. If solvents are heated by
microwave irradiation at atmospheric pressure in an open vessel, the boiling point of
the solvent typically limits the reaction temperature that can be achieved. In order to
nonetheless achieve high reaction rates, high-boiling microwave absorbing solvents
were frequently used in open-vessel microwave synthesis [11]. However, the use of
these solvents presented serious challenges during product isolation and recycling of
solvent. In addition, the risks associated with the flammability of organic solventsin a
microwave field and the lack of available dedicated microwave reactors allowing
adequate temperature and pressure control were major concerns. The initial slow
uptake of microwave technology in the late 1980s and 1990s has often been attributed
to its lack of controllability and reproducibility, coupled with a general lack of
understanding of the basics of microwave dielectric heating.
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In particular, the use of kitchen microwave ovens in combination with non-
reliable temperature monitoring devices led to considerable confusion in the
microwave chemistry community in the late 1990s and has given MAOS a bad
reputation and the stigma of a “black box” science. The majority of organic chemists
at that time were not taking microwave chemistry seriously and the discussion and
irritation around the topic of “microwave effects” has probably contributed to this
situation [12]. Historically, since the early days of microwave synthesis, the
observed rate-accelerations and sometimes altered product distributions compared
to oil-bath experiments led to speculation on the existence of so-called “specific” or
“non-thermal” microwave effects [13]. Such effects were claimed when the outcome
of a synthesis performed under microwave conditions was different from the
conventionally heated counterpart at the same apparent temperature. Reviewing
the present literature it appears that today most scientists agree that, in the majority
of cases, the reason for the observed rate enhancements is a purely thermal/kinetic
effect, that is, a consequence of the high reaction temperatures that can rapidly be
attained when irradiating polar materials in a microwave field, although clearly
effects that are caused by the uniqueness of the microwave dielectric heating
mechanism (“specific microwave effects”) must also be considered. While for the
chemist in industry this discussion may seem futile, the debate on “microwave
effects” is undoubtedly going to continue for many years in the academic world.
Because of the recent availability of modern dedicated microwave reactors with
on-line accurate monitoring of both temperature and pressure, some of the initial
confusion on microwave effects has subsided. This can also be attributed, to some
extent, to the fact that microwave synthesis today is mostly carried out in solution
phase using organic solvents, where the temperature of the reaction mixture can
generally be adequately monitored.

Controlled MAOS in sealed vessels using standard solvents — a technique
pioneered by Strauss in the mid 1990s [14] — has thus celebrated a steady comeback
since the year 2000 and today clearly is the method of choice for performing
microwave-assisted reactions. This is evident from surveying the recently pub-
lished literature in the area of microwave-assisted organic synthesis (Figure 1.1). In
addition to the primary and patent literature, many review articles [3-19], several
books [2], special issues of journals [20], feature articles [21], online databases [22],
information on the world-wide-web [23], and educational publications [24, 25]
provide extensive coverage of the subject. Among the about 850 original publica-
tions that appeared in 2007 describing microwave-assisted reactions under con-
trolled conditions, a careful analysis demonstrates that in about 90% of all cases
sealed vessel processing (autoclave technology) in dedicated single-mode micro-
wave instruments has been employed. A recent survey has, however, found that as
many as 30% of all published MAOS papers still employ kitchen microwave
ovens [26], a practice banned by most of the respected scientific journals today.
For example, the American Chemical Society (ACS) organic chemistry journals will
typically not consider manuscripts describing the use of kitchen microwave ovens
or the absence of a reaction temperature, as specified in the relevant publication
guidelines [27].

3
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Figure 1.1 Publications on microwave-assisted “microwave”). The black bars represent the
organic synthesis (1986—2007). Gray bars: number of publications (2001-2007) reporting
Number of articles involving MAOS for seven  MAOS experiments in dedicated reactors with
selected synthetic organic chemistry journals ~ adequate process control (about 50 journals, full
(J. Org. Chem., Org. Lett., Tetrahedron, text search: microwave). Only those articles
Tetrahedron Lett., Synth. Commun., Synthesis, dealing with synthetic organic chemistry were
Synlett. SciFinder Scholar keyword search on selected.

Recent innovations in microwave reactor technology now allow controlled
parallel and automated sequential processing under sealed vessel conditions, and
the use of continuous or stop-flow reactors for scale-up purposes. In addition,
dedicated vessels for solid-phase synthesis, for performing transformations using
pre-pressurized conditions and for a variety of other special applications, have been
developed. Today there are four major instrument vendors that produce microwave
instrumentation dedicated to organic synthesis. All these instruments offer tem-
perature and pressure sensors, built-in magnetic stirring, power control, software
operation and sophisticated safety controls. The number of users of dedicated
microwave reactors is therefore growing at a rapid rate and it appears only to be a
question of time until most laboratories will be equipped with suitable microwave
instrumentation.

In the past, microwave chemistry was often used only when all other options to
perform a particular reaction had failed, or when exceedingly long reaction times or
high temperatures were required to complete a reaction. This practice is now slowly
changing and, due to the growing availability of microwave reactors in many
laboratories, routine synthetic transformations are now also being carried out by
microwave heating. One of the major drawbacks of this relatively new technology
remains the equipment cost. While prices for dedicated microwave reactors for
organic synthesis have come down considerably since their first introduction in the
late 1990s, the current price range for microwave reactors is still many times higher
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than that of conventional heating equipment. As with any new technology, the
current situation is bound to change over the next several years and less expensive
equipment should become available. By then, microwave reactors will have truly
become the “Bunsen burners of the twenty first century” and will be standard

equipment in every chemical laboratory.
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