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PREFACE

This volume is an outgrowth of lectures delivered at the second
meeting on the subject of nonlinear partial differential equations, held at
Tohoku University, February 27-29, 1984: The first meeting was held
at Hiroshima University, 1983. The topics presented at the conference
range over various fields in mathematical physics.

We would like to take the opportunity to thank all the participants
of the meeting, and the contributors to this proceedings. Special thanks
should go to Professors T. Muramatsu and J. Kato who helped in many
ways to make the conference a success. We are also grateful to the
Grant-in-Aid for Scientific Research from the Ministry of Education, Sci-
ence and Culture of Japan for the financial support.

K. MASUDA
M. MIMURA
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Lecture Notes in Num. Appl. Anal., 8, 1-14 (1985)
Recent Topics in Nonlinear PDE II, Sendai, 1985

Large-Time Behavior of Viscous Surface Waves

by

* *
J. Thomas BEALE and Takaaki NISHIDA

Duke University Kyoto University
Department of Mathematics Department of Mathematics
Durham, NC 27706 Kyoto, 606 Japan
§ 1 Introduction

We are concerned with global in time solutions to a free
surface problem of the viscous incompressible fluid, which is
formulated as follows: The motion of the fluid is governed

by the Navier-Stokes equation

up o+ (u-V)u - vVAu + Vp = 0
(1.1) in Q(t) ,
Veu = 0
where Q(t) = { x € R2 , -b <y < n(t,x) } 1is the domain
occupied by the fluid. The free surface S_ : y = n(t,x)

F

satisfies the kinematic boundary condition

n - u = 0 on S

(1.2) n 3 -

The stress tensor satisfies the free boundary condition :

(1:3) pni - \)(ui,Xj + uj'xi)n. =

lgn - BV{(1+]vn|?%)~

* Both authors are supported in part by the Mathematics Research
Center, The University of Wisconsin-Madison.



2 J. Thomas BEALE and Takaaki NISHIDA

where n is the outward normal to SF , g 1is the
gravitation constant and B is the nondimensionalized
coefficient of surface tension. On the bottom Sg 1 Y = -b

we have the fixed boundary condition

(1.4) u = 0 on SB .

We consider the initial value problem of (1.1)-(1.4) with

the data at t = 0

=
1]

r10(X) ’ X € R §
(1.5)

u

UO(XIY) in QO ’

where QO = Q(0).

The local existence theorems for (1.1)-(1.5) are proved for both
cases with or without considering the surface tension ([1],[2]).
A global in time existence problem for (1.1)-(1.5) neglecting the
surface tension (B=0) has a difficulty which was pointed out in
[1]. However if the surface tension is taken into account, the
following global existence and regularity theorem is proved.
Theorem 1.1 ([2])

Let 3 < r < 7/2 . Suppose the compatibility condition on the

initial data :

V'UO = 0 in QO ’
(1.6) {((uo)i,xj + (uO)j,xi)nj}tan = 0 on y = ﬂo(x) ’
uy = 0 on y = -b .

There exists 6, > 0 such that if the initial data
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satisfy

(1.7) E, = |n,l + Junl
0 0 Hr(RZ) 0 ut 1/2(90)

then there exists a unique global solution n,u,p of (1.1)-

(1.5), which satisfies

(1.8) ne k2R**Rr?) , u € KS(R*xQ(t)) , Vp € K* 2(RxQ(t)) .

Further given any T1 > 0 and any k > 0 , there exists 61 >

such that if

(1.9) E < 61
then the solution becomes smooth for t > T1 , i.e.,

(1.10) n e Kr+k+1/2((T1,m)xR2) , u€ Kr+k((T1,w)xQ(t)) ,

vp e K2 (T, =) xa(t)) .

In particular the solution with k > 2 1is classical.
Here H'(+) 1is the usual Sobolev space with norm | |, on the
domain . Kr((T1,T2)XQ(t)) is composed of the restriction to

the fluid domain Q(t) of the functions belonging to

(1.11) KF((1,,1,)xR%) = 100(r,, T, (R A 5 20r, 1, 10w

n e gr(R+XR2) is defined as follows :

ne Kr((O,T)XRz) for any T >0 and n = n1 + n2 such that
N, € Kr(R+XR2) and Ny is the Fourier transform in space-time
of L1 function of bounded support.

See [2] for the detailes of the function spaces.

In this summary we give an asymptotic decay rate for the
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solution of the above theorem.

Theorem 1.2

If Ny € IJ(RZ) , then there exists 62 > 0 such that if
(1.12) E, = Ej + |nO|L1 < 8, ,

then the solution has the decay rate :

[a%(t) |, < CE1(1+t)‘“+°"/2

luce)l, . I9p(t)], < cE,(1+t)7' .

In § 2 we transform the free boundary problem (1.1)-(1.5) to that
on the fixed domain and reduce the components of the stress
tensor to zero. The linear decay estimate is discussed in § 3

and the nonlinear one in § 4 .

§ 2 Reduction of the Problem

We remind ourselves some main ideas for the reduction of the
free surface problem in [2]. First we use the transformation of

the free boundary problem (1.1)-(1.5) to that on the fixed

(equilibrium) domain : Q = {x & R2 , -b <y < 0}. Given n(t,x)

we extend it for y < 0 as follows :
= i n
(2.1)  ne,x,y) = T el 1Y n(e, e

where n(t,&) is the Fourier transform with respect to x and

ﬁz_1 is the inverse. If n(t,-) belongs to HS(SF) , then

s+1/2

n(t,*,*) belongs to H () , where and hereafter S

F

denotes the upper surface y = 0 of Q@ . For each t > 0 we
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2

define the transformation 6 on Q onto Q(t) = {x € R,

-b < y < n(t,x)} by

(2.2) B (xq,x,vit) = (X4 Xy, n+y(1+n/b)) .

The vector u on Q(t) = 6(Q) is defined from the vector v on
Q by

(2.3) ui = ei,xjvj / J = aij Vj ’

where J 1is the Jacobian determinant of df = (6 ) = 1+n/b +

1,3

= J

ny(1+y/b) . This map conserves the property of divergence free.
Vev = 0 in @ iff V.u = 0 in Q(t) .

Using the transformation (2.2)(2.3) and ui,xj = glj al(uik vk) i

where ¢ = (de)_1 and so on, we can rewrite the free surface

problem (1.1)-(1.5) to that on the equilibrium domain Q as

follows :

(2.4) nt = Py = 0 on SF 7
(245) ¥ = ¥ Av + Vg = F(n, v, Vq)

in @ ,
(2.6) vev = 0
(2.7) v = 0 on SB o
(2.8) Vi'x3 + V3'xi = F-l(f‘l, v) ’ i = 1, 2

on SF

(2.9) g - 2v V3,x3 - (g-BA)n = F3(n,V)

Here we have gathered the linear terms on the left hand side and
all the nonlinear terms on the right hand side of the equation.

Next we reduce the tangential component of the stress tensor
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' -3/2 ;
F. , i=1, 2 to zero : Given F, € H" 3/ (SF) ; =1, 2 ;

choose the vector 2z € Hr+1(Q) satisfying the condition

z = 0 ; By z =0, o Z = (Fz, ~F . 0) on SF 7
z =0 , 3y Z = 10 on SB p
Then w = VXz satisfies
w3 = 0 j i w3’x' = Fl s 1i=1, 2 on SF ’
i
Vew = 0 in Q 7
wy o= 0 on SF .
Therefore n, v' = v - w , g satisfy the system (2.4)-(2.9) with

the replacements F by F4 = F - Wy VAw and Fi , i =1, 2 by 0.
The prime of v' 1is omitted hereafter.

Last we rewrite the system (2.4)-(2.9) with F = F4 7 Fi =0,
i=1, 2, for n, v, g in the operator form. Let P be the
projection on the subspace of solenoidal vectors orthogonal to
the subspace qo = {Vd : ¢ € H1(Q) , & =0 on s_ }

of HO(Q) y LeCuy
(2.10) H = PHO@ qo =
Applying P to (2.5) we have

(2171 v, - VPAv + PVg = PF

t
Here PVg can be decomposed to three parts as follows :

pvg = vrl1) 4 gn(2) | ggr(3)
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where 7 , i =1, 2, 3, are defined by
n(1) = 2Vv 7 "(2) = gn - BAn i n(3) = F
3,x3 3
(2.12) SR A in 2 ,
(i) _
ay n = 0 on SB %

We denote
A v = -PAV + Vn(1) i

(2.13) Rv = v3|SF ,

R* ((g-Ba)n) yr(2)

Using these notations the system (2.4),(2.11) has the form
(2.14) nt = R v 7

(2.15) v, + A v + R ((g-BA)n) = £ ,

t

Vﬂ(3)

where f(n, v, Vg) = PF4 -

(2.6)(2.7)(2.8) with Fi 0 give the domain condition of

v .

§ 3 Rates of Decay for Linear Problem

We investigate the decay rate of the solution of the

linearized equation.
(3.1) n = Ru i

(3.2) u, + Au + R ((g=BA)n) = 0 ,

on
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(3.3) n(o) = n u(0) = u, at t =0 .

0 ’

These are supplied with the conditions :

(3:4) Veu = 0 in Q 7

(3.5) ui,x3 + u3’xi = 0 s 1 =1, 2 on SF i
(3:6) u = 0 on Sp .

Theorem 3.1 Let E, = |n0|L1 + |r10|5/2 + |uo|0 .

Then the solution of (3.1)-(3.6) has the decay rate :

BBy gm ()2 o < s5/2 .

IA

|a°‘n(t)|0
(3.7}

A
@]

I u(t) |2

The theorem is proved by several steps.
ret ) = (v=(n, u:nen'(sp , uern’(@ ), where

(p, n)1 = g(p, n)o + B(Vp, Vn)0 is the inner product of H1(SF)

5/2(8 ) , ué€ PHZ(Q) and u satisfies

and set W= { v :ne€eH F

(3.4)(3.5)(3.6) } . Let us define the operator

o

{ 0 R\ /
| ;

(3.9) Gv = from D(G) in 7QL ,

I
[
O

\ —R*(g—BA)n -A

and consider its closed extension which will be denoted by G
again.
Lemma 3.2
’ : tG
The operator G generates a contraction semigroup e on %i ¢
and W C D(G) .

Consider the resolvent equation :
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ERH

The resolvent of G can be extended to the left half plane as

(3.10) (A - G)

lemmas 3.3-3.5.
Lemma 3.3 For any To > 0 there exists Co > 0 such that if
re { x=o0+it, —cylt| <o <1y, Tl > 19 ¥

then the solution of (3.10) has the estimate

+

-1
(3.11) laf, + [xlluly + |2 Ru|5/2 + Inlg/p + IAlInl3/;

clltly + Inlg 5 -

IA

We treat the resolvent near X = 0 in two cases separately ,
i.e., (i) The supports of ﬁ(g) , %(g,y) belong to ({|&| 2 £y } -
(ii) The supports belong to {|&]| < £y } - Here "~ means the
Fourier transform with respect to x .
Lemma 3.4
For any go > 0 there exists Ty > 0 such that if
e { |2 < ry } and the supports of ﬁ(g) ; %(g,y) belong
to { lg| = €y } » then the resolvent equation (3.10) has the

solution (n, u) satisfying

(3.12) luly » Inlg/y < © Cnlg,, + 1€l

Let G(&) be the Fourier transform of G with respect to x .
Lemma 3.5

There exist &, >0 and r,, r, ( v(ﬂ/2b)2 > Fa D E, 50 )
1 1 2 2 1

1 < |x] < r, and lg] < £, + then

- -1 . ; ;
(A - G(¢&)) exists except for a one-dimensional eigenspace

such that if r

which is analytic with respect to & . The eigenvalue and
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eigenvector have the following expansions.

A = —(gbo/3v)|E|® « of|&]%)y .
n = 1 + O(l€|2) ’
(3.13)
uj = 1(g€]/2\))(y2—b2) + O(|£|3) ’ J = 1, 2 4

(g€ |2r2v) (y373-p2y-26373) + o(]E]Y) .

U
By using lemmas 3.2-3.5 the decay estimate (3.7) can be proved by

the transformation of the integral path of the reprensentation

o+iT
(3.14) w(t) = &€ v = lim 1 J AE o - gy vo @, 0 >0
T>o 271 o-it
to the left half plane.
§ 4 Nonlinear Decay Estimates
The free surface problem (1.1) - (1.5) was reduced to the
following system in § 2.
(4.1) n, -Ru = 0 ,
*
(4.2) u. + Au+ R ((g-BA)n) = £ ,
(4.3) n(o) = No + u(0) = ug ’

where f 1is nonlinear terms depending on n, u, Vp and their
derivatives.
The initial value problem (4.1) - (4.3) has the unique

solution (Theorem 1.1) which becomes smooth for t 2 T1 > 0.

Namely we know that if EO < 61 , then



