~ Robin Jones ¢ Clive Maynard s lan Stewart

Springer-Verlag

Robin Jones Clive Maynard Ian Stewart

The Art of
Lisp Programming

With 12 Illustrations

Springer-Verlag
London Berlin Heidelberg New York
Paris Tokyo Hong Kong

Robin Jones
Department of Mathematics, Science and Information Technology,
South Kent College, Folkestone CT20 2NA, UK

Clive Maynard _
School of Electrical and Computer Engineering, Curtin University of
Technology, Perth, W. Australia

Ian Stewart
Mathematics Institute, University of Warwick, Coventry CV4 7AL,

UK

The illustrations by Sir John Tenniel that decorate all chapters except
for the Quick Reference Guide are reproduced from Alice’s Adven-
tures in Wonderland and Through the Looking-Glass by Lewis
Carroll, with the permission of the publishers, MacMillan & Co.
Ltd., London.

ISBN 3-540-19568-8 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-19568-8 Springer-Verlag New York Berlin Heidelberg

British Library of Cataloguing in Publication Data

Jones, Robin
The art of lisp programming.
1. Computer systems. programming languages: Lisp languages
I. Title II. Maynard, Clive, /945-111. Stewart, Ian, /1944—
005.13’3
ISBN 3-540-19568-8

Library of Congress Cataloging-in-Publication Data
Jones, Robin
The art of Lisp programming/Robin Jones, Clive Maynard, Ian Stewart,
p.cm.
ISBN 0-387-19568-8 (U.S.)
1. LISP (Computer Program language) I. Maynard, Clive, 1944- II. Stewart, Ian.
III. Title.
QA76.73.L23J66 1989
005.13’3--dc20 89-21706 CIP

Apart from any fair dealing for the purposes of research or private study, or criticism
or review, as permitted under the Copyright, Designs and Patents Act, 1988, this
publication may only be reproduced, stored or transmitted, in any form or by any
means, with the prior permission in writing of the publishers, or in the case of
reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquires concerning reproduction outside those terms
should be sent to the publishers.

© Springer-Verlag London Limited 1990
Printed in Great Britain

The use of registered names, trademarks etc. in this publication does not imply, even
in the absence of a specific statement, that such names are exempt from the relevant
laws and regulations and therefore free for general use.

Filmset by Goodfellow and Egan
Printed by The Alden Press Ltd, Osney Mead, Oxford
543210 - Printed on acid-free paper.

The Art of Lisp Programming

“What does it live on?” Alice asked, with great curiosity.
“Sap and sawdust,” said the Gnat. “Go on with the list.”

Lewis Carroll, Through the Looking-Glass

Preface

Until recently, Lisp was a language used largely by the Artificial
Intelligentsia on mainframe computers. The existing textbooks are
consequently directed at a sophisticated audience. But over the last
few years Lisp has become widely available on IBM PCs, Macin-
toshes and the like. Furthermore, Lisp is an immensely powerful
general-purpose language. The aim of this book is to introduce the
philosophy and features of the language to new users in a simple and
accessible fashion.

The reader is likely to be familiar with several procedural lan-
guages such as Pascal or BASIC, but may not have met a functional
language before. Lisp is a good starting point for learning about such
languages. Functional languages in general are beginning to become
popular because their mathematically oriented structure makes them
more susceptible to formal methods of program proof than are
procedural languages. It’s an important practical problem to prove
that software actually does what it’s designed to do—especially if, as
is not unusual, it’s controlling an ICBM with a 50-megaton warhead.
In addition, functional languages are attractive for parallel pro-
gramming, the hardware for which is now becoming available at
realistic costs.

Our main objective is to present the basic ideas of Lisp, without
too many confusing frills, so that the reader gets used to the
particular style of thinking required in a functional programming
language. This is precisely why we don’t use some of the standard
techniques. For example, our program layout is unconventional: the
aim is to emphasize the logical structure of the code rather than to
save space. While developing the facility to program in Lisp we solve
some problems before having introduced the most appropriate tools.
To the experienced programmer the resulting code will look
clumsy—and, we hope, to you when you’ve finished the book—but
the sheer fact that we can do this illustrates the flexibility of the
language. It also gives some insight into how the standard functions
might be constructed.

This book is not a reference manual. Although it standardizes on
Common Lisp, it discusses only a fraction of the full range of
functions in that implementation of the language. It’s a question of
seeing the wood for the trees: the new user would find the full
language bafflingly complex. We hope that, by the time the reader
has finished this book, his manuals will have become accessible.

Where appropriate, chapters end with a series of exercises. We
have given answers immediately after them, because the material
forms an integral part of the development of the reader’s understand-
ing of the language.

The early chapters develop the language using short, easily under-
stood functions. However, not all Lisp is short, or easily understood.
To give a feeling for what a realistic project might look like, the last
three chapters develop a Lisp-based interpreter for the language
ABC.

Most Lisp systems have an interpreter and a compiler. We confine
our attention to interpreters, because they provide instant feedback
and, usually, simple editing features. The reader will get most out of
the book by working through it while sitting in front of a warm
computer running a Lisp interpreter.

Thus far we have referred to ourselves in the plural. However, only
one of us wrote any particular chapter, so to continue to do so strikes
us as stilted and formal. Henceforward ‘we’ therefore becomes ‘I’.
Any reader who dislikes this should invoke Lisp’s power and

(defmacro I() 'we)
Folkestone, Kent Robin Jones

Perth, W. Australia Clive Maynard
Coventry, Warwickshire Ian Stewart

Contents

7 Some BaSiCIdRaS . cumus ssnsmmsass sovssasnsss sass swsnamimes s e 1
S TS oo ioseit i 55755, S TR TS 656 S90S SRS SISO SSTS SIS B SEH STRSlS LSS 2
Representing Lists...........oooooiiiiiiiiii 3
The Interpreter.... ..o 4
| Q011614 10) s RPN 5
Two More PrimitiVeso.ooveiuiieiiiiiiineeieeeieeeaeenas 5
Constants and Variablescooiiiiiiiiiiiiiiiieens 6
S=EXPIEsSSIONS. . youssssmans sssssmsmsinsss onssngmense suse o vguenss wesns 6
POSISCIIPL: cs550 swan smisvas s sivwivars s Sosis wos S6io 597506 S8 ies 658 s 3 6
EXEICISES: T o i ssni ins anins asio oo aois e s amai s soi S5y 5 4305s st o 7
AATISWETS .o ecooininmisinins bcsiioioss i 5.6 8 618550550 S50 56 5 5500 SA1038 4 8 680, 560 e o 7

2 List Functions..............coooiiiiiiiiiiiiiiiiei e 9
SPLitting LiSts ...c.vvnininiiiiiiiiiii i 10
carand CATo 10
SEHNG P LSS uos coms ssmmven snm ssssspesumevses svssang svs supsons sawos 11
SCEG e s s ssiemsss s9ss SaSREms 00 SRS TSRTINS THER U SO S SR U SUEE 5 11
A Pi€CE Of PEAARITY :.. svmorse s swswmsmsnsss awse ssmmmmn s somsnas aes o 12
Heéad and Tall REVISIEE . cson asmssnssmms sensanssassssmmsunsnnssams s 12
COIS, e sisis 5705 s55706 353 S50 Saiwiioso SIE310 oo wats ¥Rl SE Hioio BIEad TS Mo TS & 13
POSESCIIPL, s smasms swon sassass siss sonsas 5595 Sa8 565 555 5985 S48 S0Rwims 8 13
EXCICISES 2 25 scssinn svm ian s s 65 650,550,255 535 555 590§ 695,40 8.5 & 13
ADISWETS...cis.c0.e sisiovivsimmrsiiivs mmiuisbrmrermsios simms i sioi sibm §850cb it oorm 08 imissmms 14

3 Predicates......... ..o 17
[¢70) 1 Lo DU OSSR 18
Boolean Functionsoooiiiiiiiiiiiiiiiii i, 19
EXCTICISES 3 .ot 21

4) TR T w3 1) | DT, 23

POWETS .ottt et ettt e e 24
Boolean Functions Revisitedccoviiiiiiiiiiiiiiiii, 25
Bl e es wesmmommnes bbs 0 85 ois SHHRRSl HESHAS RS S SSES NS O OATOT S 25
Meanwhile Back at the Problem., 26
THTTL oo wreree oo srussismsamminios svsosmcefiih s 25485550 04156 A0S SPETs G054 S0 0 RS A SRS 26
AND ANAIOR.. .o cenvons snns smoinsnis sis silpidiss 3558 557 355 S5 S8 s 26
FEAL 1 e cosrasiarsiimtors smcaco miimsnrore scoeco svaismimens isso mmmsniscoarn smads ai6ioiSESTH S84 BRERES PR 58 27
111 5] PP 28
(o) AP PPRPP 28
The Fly:ifi the OINtmMEnt ... s e vems sawomee vose sone sssisims sne smwsins 29
aAPPend AN MISE oscvsmons sune smmnnss wiss smvass soss sesspenss sevopsvses 29
POSESCIIPE 50 555 sws sivmonm cuom s soes smnssonss sevsisnyss sas smanss 30
EXCICISESIA «civusins s s soms s ins sws 657 ool sits 15510 Ao Siais SO0 S6isalize 30
INTISWETS .« eimrarnmis s sm issin's S5 £310000550 5555 555664065 o8 908 700 4 500 S50 ASIRCAIE 31
5 A Look Back (and Forward)...................cocvovevreevennen.. 33
Variables: aSense of Placeccooviviiiiiiiiiiiiiinnnnn, 34
VATIADIE: SCOPE o o ssvmsssams cosmues vuss svsmsas s seswsosmass1ass sssy 36
Variable: BANAING: :s: suomsnen sossuse s sessavosns s9es sossnss savs s5inss 36
Free Variables o seos sossiss soss s50 oan aons soas s 555 v s o5 37
Lexical SCOPINgccooiviiiiii 37
A Software Engineering Problem............................L 38
1] (o PPN 38
System Variablescoooooiiiiiiiiiiiiii 39
| 25'€53 (01 1= I R 39
e T 3 s T ——— 40
6 Setsand Lists ... 41
Sets Of NUmbers.c.ooviiiiiii e, 42
The Set Functionscoiiiiiiiiiiiiiiiiieeeeaeenns 42
| §1 175 Teta 1) o NPT 43
QUSJOINEED s smsmmmsspns e onss sosseaninss o s e S8ES SEoHEasFEn 44
SUDSELES 50 smmm svisnmns sams svisssanie Somasmssss Sms saae 68 aiks 205,68 44
COMPIEMENT s svs s wnss s s 6555 08 5555 5955 5755558 6465 5754 $0s5on or 44
L8111 10) 1 DT 45
| S5 S (o Y ¢ S 46
YN 1 1 47
ZI0DUL ..o 49
T [P 49

Single Characterscoueriuiiiniiieeieiiciieieeee e 50

MOTE ADOUL # . et 51
Yesor NO RESPONSES «ocis sossssrsnsvrnns sxmsnssssnmsoresnosvoswamnans 52
Using the read Primitivescooooiiiiiiii. 52
EXCICISES T covmime evmmmwimmnis sivis 5inis st i £535% sivs v ieios 468 s Fopmss 53
AATISWETS e vveeevaren smeo s mmiss soinis wwms mmmimsins s 06156 5436 5,600 5473 w8 6550 0 55 53
8 OUEPIL. ... v e vm s sinns smisses sioms sawe swdt sos iss 6aiss 5008 50 5505 i 55
FOIMIAL ..ot 56
The Control Stringcoovviiiiiiiiiiiiiia, 56
Printing Values..........c.coooiiiiiiiiiiiiiiie 56
HOFMAtIITECEIVES wuusis sutws ssmwrvesnrsnss sases nais sis’ 53 569 5B S5 £23%8 568 57
Using Arguments as Parameters 58
T ADS: 5.5 5 s svmis s s S n oW SR HE125 SEHE SO 45740 SRNEREE S SR 65 58
Other Output Functionscc.oooiiiiiiiiiiiiiiiininn... 58
The Telephone Index Againoooiiiiinn. 59
The read—eval-print LOOp ..o, 59
The Program-Data Distinction...................cooooiinee. 60
EXEICISES 8 . .onintiiiii i e 60
ADSWETS svu: s swenans sams omsssass sy 588 Tsassm s ems s Sasiams vems 453 61
9 Iterative ConStructscooviuiiiiiiiiiiiii e 63
OOP e 64
EETUE cous v s srmrsreies omiess sscivriniss amns 55 sy 3008 Sdls S00I8 G WISISS BRGNS 64
O sovrnion s smon sepaumes vt smpaems 098 T568 SF 0 KOS SUE SRR 55 0 58 65
The S17€ Of @ LS5 cons sonemssvans snassns suvs sams saue swwans vvs 598 % 65
IteTation V. RECUTSION, . couuscs sons somssensuns svws sovs 5% 0000555 6505 59 66
AOUINES: v somssmvsson smis sp s 5 55155 5555 4555558 5508 S50 F0Sumre smims moces oo 67
QOIS s v scurs s v 5558 5505 4508 55558 o mere i 555 mio mm oy om0t i 67
MAPPING s 5505 5555655 5588 6588555 55558 mmmiommsmmme sms scns s wam mamn smns on 69
MAPCAT «cve saseivassios 5ot smssnnmsnas swsmsasoossnrsssonsssannsnsensmmss 69
EXErcises 9 ..o 70
ADSWETS ...ttt e 70
7 0 More About Program Control 73
L & s soomosn omsmomran soss SEHRRESSERS S06T5 ST S SRR S SR e s s 73
WICTL 55 w0 wismmss s wites s siss's $45874 5058 5555 5.0 Smime wmmmmcass s wrse s 74
TTILEIE s s s smismns ¥es 55068 555 65505 5555 Smnmmsns v amsns wooge o s s s st i 74
CATE woinic wsivis 455555 5995 F56. 5505 5570 s mmutioibun mmswm oiminn sreios s aininite witan osars w5 ORED 74
SYNONYMS. ...t 75

DD CEAUIIES . i 5555 5503.6556.5.555 Siimoswsmrmsmomiamrcire wioies aremrmsaioraiowie Serats iscarmcate 1 cous 76

(=Y R P Pors O P 76
i (< TP PP PP 77
PIORI 60 PTORIL «:coivsnssasnnsssnsssnnssssssss sussoassovonvnvenvavvasanas 78
The Lambda NOtation «: ws s cvs css sssesesvnss soes sesasmmenas sovs v 79
EXETCISES 10 . . en o ceos comammiin 565 imes 5o s siis s s oo soss sins 80
JATISWETS v v e woee wmioms s sismr siersmisions oo it 8 5016 5538 0% 500 S50 4018 S008 850 80
77 File HANUNGovooeeeeeeeeeeee e 83
PAtNNAINES 510,550 sers s on smis wiins v 5665 HREHLERT 563 SEEPIST o 84
Merge-PAtNNAIES. . vs s ssms dowsswn s svas wes svswoss 993 srswiasanes 84
SETCAIIES v vemoie wmime smomosiomnsms s smniobiing ik 556,565 600 5505 siirs 4l seiod 85
Opening and Closing Files..................ooooo. 85
Keyword Arguments..........c.cooovuviiiiiiiiiiiineea. 85
The Bodyovniniiiiiiii 86
Other Keyword ATSUMENES (.. uomsven sssssaesmsnns yoss sus v 86
Gesting the File Back: :... ou: suss wwnvwws siwn smomemesions sass .o smaman 87
EOF-ERROR-P and EOF-VALUE.................c.oooiae. 87
EXCTCISES L1 o ciot ioes 0,505 56555 55 1t i 5558 550.0.6785, 5000 551838 8508 255 i 88
DA 1 T £ PP 89
72 DAtA SIEUCIITES: . oo vion oo s swinans svias s 555 045 6 s v s S350 5 4555 91
AsSOCIation ListS.......couiuiuiniiiiiiiiieiieee e 92
PAITIIS .ot 92
The Dot Notation..........cooiviiiiiiiiiiiiiiiiieeeen, 93
ASSOC <ttt ee et et et 93
BASSOCHss svrerssmsmun s ssme g aus S5 e s EIe HE Y S SR SoS R0 93
ACOTIS siscosirs ssis smmmass mwms sumvsmen s o SAREARERESS H6lls SHSRSFATAS HomS £58s 94
BOE oo sios smsmisms s o0 o mats SA5 Smmims 56 S5AT8 V9 4 HRF 04,4503 94
Database Manipulationc.ccooiiiiiiiiiiiiiiiinninenn... 95
TEEES 5 505 siminiainss boiisinnsonbinms Snmsessswses sose smivi o simsie omssaioonn 96
Binary Treesc.oevvniiiiiiiiiii e 97
The Searching Problemcooooiiiiiiiiin.. 97
Implementing a Binary Treecoooviiiiiiiiiiiininin.. 98
GTOWING 8 TECE wonsuyunms suns awsmsmmsmis sunpammasesmsms wws siusmaands o 98
SearchiNE the THEE: cu o s wsssws vns vannsssssms e soes dam s sssanes s 100
SACKS s viums soms smvasion v 1358560 5655 5555 555 855 mninis amimm smmommaiasm i o 100
PSR 05 5555 555805 €555 G683 msains foiom mamernis ioms simce swmie i v smins 101
010 102
EXercises 12 ..ot 103

7 3 Arrays, Strings and Structures ... 105

ATTAYS .. eeneenrrarncasiassissssenrerasensnnannsnssssrnsresssassnssvanses 105
Changing an Array Elementcooooiiiiinin. 106
Multidimensional ATTaysc.coovvieieiiiiiiiiriniiiiiaennes 106
SEINES - et 107
OAP s 5610 sises s st enon wsgnss srvscs ok ssiotbarals Seend avacn issne s sietsn svce o 107
SEFITIB 5 i o s s s s s i HIo SSLHAFRINE £ it SUiGssTaTGrarie e v 107
SEMIIE S s s i seves S0 556 900 96wt Rl s 4o s sv's Fiswaiss Saiem s 108
SUDSEENGS . c.cn v s sos vos samss s ssms wos o swote sass sews s s 5o 78 108
String Manipulation Functionscocoooiiiin. 108
SEIUCLUTES . .. et ettt 109
EFSIIUCE ..ovtenieee i 109
What defstruct Doescoooiiiiiiiiiiii 110
INDEEICANCE soionian svws suen svs e sogee s som s sososs st - vsinans s s 73 110
EXETCISES 13t sns voms snoswms woms ams siwesms wams s nsws v v 55 5w i 111
ATEWET Sissis s s a50.585 S05% 05 SROESS S665 G003 SH0E SHET0S F0 08 26 112
74 A Pot-Pourri of Featurescococovveveeeeeen.. 113
Functions, Macros and Special Forms 114
defmacro.........oooiiiiiiii 114
MACTOEXPANA ...ovtiiiiii e 115
APPLY AN TUNCAI vuce s smns soms ses sy roms svws s o s s s v 115
More About Function Arguments...........cccovuviiiininnnnn.. 116
Undefined Numbers of Arguments...............ccoceeuveninnn.. 116
Optional ATEUMENES qcusus sses siwms sossas saws woms sasas ssms 65 Hovsss 117
Keyword Arguments............ccooeiuiiiiiiiiiiiiiiiiiiiiiienenen. 118
Multiple-Valued Functions.............cccooooiiiiiiiiiinnne.. 118
Packagesovuiuiiiiiiiiii e 119
Parallel and Sequential Assignments...................c.ceenee. 121
82 o [121
Lot 121
COMMENTS ...ttt e, 121
EXercises 14o, 122
ANSWETS. ...ttt 122
75 Debugging Techniques......................ooooiiiiiii.... 123
Using format...........coooiiiiiiiiiiiiiiiiii e 124
BICAK s s o 5505508 5504 2604 v mmsen wisnm mrmisimi wmin s s smresimis i s e 124
The Stepper.......cooviiiiiiiiiiii e 125
ETACE oo, 126
APTOPOS ettt 126

15111 LS 127

7 6 Object-Oriented Programmingc.cooeoeiiiiinnn. 129

EIBJEOE v sowsmms sxvs povs wywnsms vewn v mimmone saren wren sl 535 £695 & 130
CLASSES +uvnvreteneneeee ettt ettt et ee e e e e e aeneenes 131
ObJeCtiON] ;s camesson cuss s ssnsns sunn svns vwwsass ssre swms comwsoos svves 132
EXAMPIE: .is snni s nan s somsavsnnas vassssasnssonios suss sosssseravanmes 132
INNETIANCE . . i siinssmsmssisnmams vaws s sespas H565 S665 1RSIV TR TRSS Sae & 133
FODICEIONS o e« comnmiomvs 05 5500 7518 i3 6508 860 Sis83 S0880 5B S 1608 S0 3 135
QESPIAY e evn covevvovmmsmann smnsnas sias iios siiss ssisaws Sus 4388 s 553 s o 135
T7ABC....ooooooeeeeeeeeeeeeeeeee e 137
Examplesiof ABC COE..: wmrusiuns vuws suovann sume sennsvsamss sqwe s 138
Description of the Languagecoooviviiiiiiiiinn, 138
Before WE STATE : s o suws soms svsines sass somsaosssessess ssssmasenss soss o 139
7 8 ABC Interpreter: SCannercoooeiiiiiiiiiiii.. 141
Overall Structureoooooiiiiiiiiiiiiiiiiieeeaa 141
TheE SCAMNET o suwusims russ s wmwaess sy sbeveneunie v SAeEw oS £055 143
SYMBO] TablE: s cuemunssuss senmamssnas sows sopsusnnes svas sosseusawns suss 144
EX{Tacting TOKCNS « .. s sxanssvamms sops epnwssssumssans aomases sass sa35 o 145
EXtracting SYIUAX .o:quss ssonswssss ssas sosusvssoss ssss shswsessons i 147
Stacks ReVISItE s sun sons vams cmnunns camsmssimn sman soms suins s saws seas & 148
OPptimIizZation........ooiiiiiiiiitii i 148
7 9 ABC Interpreter: Executioncooiiiiiiinn... 153
What the Interpreter Will Recognizec...oeoeeenne. 154
Template Matching, . ..: vocsoss ssws svws smvsvs sems soes smn asws svas vuinn s 154
The Remaining Codeccoveviiiiiiiiiiiiiniiiiiiieene, 155
A Session with the Interpreter................c.oooiiit. 159
Quick Reference Guideoociiiiiiiiiii.. 161

Subject INAEX iuee cummsas soms swonsonsnns sus ssas ssasiss soes v ass es 167

Some Basic Ideas

The White Rabbit put on his spectacles. “Where shall 1 begin, please
your Majesty?” he asked.

“Begin at the beginning”, the King said, very gravely, “and go on till
you come to the end: then stop.”

Alice’s Adventures in Wonderland

There are those who will tell you that LISP is an acronym for LISt Processor and
others who insist that it stands for Lots of Infuriatingly Silly Parentheses. Both
camps have good arguments to back them up. Lisp is a language which deals
almost exclusively in list structures, and there are a great many brackets in a
typical Lisp program. Paradoxically, Lisp derives much of its power as a
programming language from the fact that it is limited in this way, and, as we shall
see, this philosophy leads automatically to the proliferation of similar symbols
(which just happen to be brackets) which so incense Lisp’s detractors.

2 The Art of Lisp Programming

Lists

Perhaps we should begin, then, by studying what is meant by the term ‘list” in the
current context, and try to see why a list is such a powerful construct.

Suppose that you are writing a word processor. A simple technique for storing
the text in memory would be to use an array as shown in Figure 1. There are two
main objections to this rather naive format. First, an attempt to add the word
‘black’ before ‘cat’ requires that the remaining words in the text are each

Text

The
cat
sat
on
the
mat

—

FiGURE 1. How not to store text.

shuffled one cell down the array. This is OK if we’re talking about a six word
sentence, as here, but if it’s the first sentence of the great American novel,
there’s going to be a long wait before the extra adjective is successfully inserted.
Second, there’s an implicit assumption that all words are of the same length. Of
course, a word may be padded with spaces, but that will waste memory, and
there’s certainly a limit to the size of word which can be held. So let’s consider an
alternative arrangement, shown in Figure 2. Here, each entry consists of a word
and a pointer to the next entry. The physical order of the entries no longer
matters, so that additional words can be added to the text simply by creating
cells for them and altering a couple of pointers (see Figure 3).

That deals neatly with the editing problem, but it still leaves us with the
difficulty of handling what are effectively fixed-length words. Suppose we revise
the structure of Figure 3 so that each entry consists not of a datum plus a pointer,
but two pointers. Now the left-hand pointer can point to a similar structure
which identifies a word and of course it can be any length, because we can signal

[Lo [ot— = o+ o [oF—

\—->{ the Io—{—»{ mat *I

FIGURE 2. A better structure.

Some Basic Ideas

[re Ithr—l cat | o—+ st [ofF— on [eg
L e [met [7]
[black [o]

FIGURE 3. Adding the word ‘black’ now only entails some pointer manipulation.

[eled—{glet—{el -] L9l :

T h e c a t

FIGURE 4. A true list. Now words can be indefinitely long.

its end with some appropriate delimiting value for the pointer. We now have the
organization shown in Figure 4, where the delimiting pointer is an asterisk.

It’s clear that this is an immensely flexible structure, because there is nothing
in principle to prevent us from extending it indefinitely. Each pair of pointers
may point to other structures of the same general type, or to terminating
symbols. In this example, such symbols are either letters or null pointers, but
there are all sorts of other possibilities. Note, however, that while both pointers
can point to other structures, only left pointers can point to terminal symbols
and only right pointers can be null.

The structures we have been discussing are called lists. The terminal symbols
(here letters) are called atoms, because clearly they cannot be divided further.
(Yes, I know physicists are always splitting them, but that’s their fault for
choosing the word before finding out that they could do so. We will use the word
with its original meaning.)

Representing Lists

Clearly, the diagrammatic notation for a list of Figure 4 is inappropriate to a
computer language, although there are occasions when it can be a useful prop on
which to hang an idea and I shall use it from time to time in this book. Lisp
employs a simple symbolic notation. For example, the list of letters ‘A,B,C,D’ is

4 The Art of Lisp Programming
written (A B C D) and can be visualized as Figure 5. Similarly, Figure 6 shows
the list ((a b) (c d €)). The Lisp form of the complete list of Figure 4 would be:
((The) Ccat) (sat) Con) Cthe) (mat))

Note that spaces are used to separate atoms, but are otherwise insignificant.
Thus the spaces between brackets and those between brackets and atoms are not
necessary but do no harm.

IIIHvI*i——IYIFP———rM*I

A B C D

FIGURE 5. (A B C D).

0 ~—
Q <—r1t9

FIGUREG. ((ab)(cde)).

The Interpreter

We’re very nearly in a position actually to try something out. Enter your Lisp
interpreter. The syntax for this will be implementation dependent, but it will
probably involve invoking an executable file from disk, perhaps coupled with an
environment file. In any event, you should be greeted with a prompt which is
likely to be *>’.

It should come as no surprise that the interpreter will only accept atoms or lists
as input. So let’s give it a list. Type:

(D)

The interpreter will probably respond as soon as it sees the closing bracket (but
some implementations require you to hit RETURN):

NIL

What’s happened is this. The interpreter has accepted the list, which is empty,
and immediately evaluated it. Its value is NIL, which is a reserved Lisp atom
meaning either the empty list or the logical value FALSE. Since we’re at the top
level of the interpreter, Lisp has returned this value to us.

