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The Art of Lisp Programming




“What does it live on?” Alice asked, with great curiosity.
“Sap and sawdust,” said the Gnat. “Go on with the list.”

Lewis Carroll, Through the Looking-Glass



Preface

Until recently, Lisp was a language used largely by the Artificial
Intelligentsia on mainframe computers. The existing textbooks are
consequently directed at a sophisticated audience. But over the last
few years Lisp has become widely available on IBM PCs, Macin-
toshes and the like. Furthermore, Lisp is an immensely powerful
general-purpose language. The aim of this book is to introduce the
philosophy and features of the language to new users in a simple and
accessible fashion.

The reader is likely to be familiar with several procedural lan-
guages such as Pascal or BASIC, but may not have met a functional
language before. Lisp is a good starting point for learning about such
languages. Functional languages in general are beginning to become
popular because their mathematically oriented structure makes them
more susceptible to formal methods of program proof than are
procedural languages. It’s an important practical problem to prove
that software actually does what it’s designed to do—especially if, as
is not unusual, it’s controlling an ICBM with a 50-megaton warhead.
In addition, functional languages are attractive for parallel pro-
gramming, the hardware for which is now becoming available at
realistic costs.

Our main objective is to present the basic ideas of Lisp, without
too many confusing frills, so that the reader gets used to the
particular style of thinking required in a functional programming
language. This is precisely why we don’t use some of the standard
techniques. For example, our program layout is unconventional: the
aim is to emphasize the logical structure of the code rather than to
save space. While developing the facility to program in Lisp we solve
some problems before having introduced the most appropriate tools.
To the experienced programmer the resulting code will look
clumsy—and, we hope, to you when you’ve finished the book—but
the sheer fact that we can do this illustrates the flexibility of the
language. It also gives some insight into how the standard functions
might be constructed.

This book is not a reference manual. Although it standardizes on
Common Lisp, it discusses only a fraction of the full range of
functions in that implementation of the language. It’s a question of
seeing the wood for the trees: the new user would find the full
language bafflingly complex. We hope that, by the time the reader
has finished this book, his manuals will have become accessible.



Where appropriate, chapters end with a series of exercises. We
have given answers immediately after them, because the material
forms an integral part of the development of the reader’s understand-
ing of the language.

The early chapters develop the language using short, easily under-
stood functions. However, not all Lisp is short, or easily understood.
To give a feeling for what a realistic project might look like, the last
three chapters develop a Lisp-based interpreter for the language
ABC.

Most Lisp systems have an interpreter and a compiler. We confine
our attention to interpreters, because they provide instant feedback
and, usually, simple editing features. The reader will get most out of
the book by working through it while sitting in front of a warm
computer running a Lisp interpreter.

Thus far we have referred to ourselves in the plural. However, only
one of us wrote any particular chapter, so to continue to do so strikes
us as stilted and formal. Henceforward ‘we’ therefore becomes ‘I’.
Any reader who dislikes this should invoke Lisp’s power and

( defmacro I() 'we )
Folkestone, Kent Robin Jones

Perth, W. Australia Clive Maynard
Coventry, Warwickshire Ian Stewart
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Some Basic Ideas

The White Rabbit put on his spectacles. “Where shall 1 begin, please
your Majesty?” he asked.

“Begin at the beginning”, the King said, very gravely, “and go on till
you come to the end: then stop.”

Alice’s Adventures in Wonderland

There are those who will tell you that LISP is an acronym for LISt Processor and
others who insist that it stands for Lots of Infuriatingly Silly Parentheses. Both
camps have good arguments to back them up. Lisp is a language which deals
almost exclusively in list structures, and there are a great many brackets in a
typical Lisp program. Paradoxically, Lisp derives much of its power as a
programming language from the fact that it is limited in this way, and, as we shall
see, this philosophy leads automatically to the proliferation of similar symbols
(which just happen to be brackets) which so incense Lisp’s detractors.
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Lists

Perhaps we should begin, then, by studying what is meant by the term ‘list” in the
current context, and try to see why a list is such a powerful construct.

Suppose that you are writing a word processor. A simple technique for storing
the text in memory would be to use an array as shown in Figure 1. There are two
main objections to this rather naive format. First, an attempt to add the word
‘black’ before ‘cat’ requires that the remaining words in the text are each

Text

The
cat
sat
on
the
mat

—

FiGURE 1. How not to store text.

shuffled one cell down the array. This is OK if we’re talking about a six word
sentence, as here, but if it’s the first sentence of the great American novel,
there’s going to be a long wait before the extra adjective is successfully inserted.
Second, there’s an implicit assumption that all words are of the same length. Of
course, a word may be padded with spaces, but that will waste memory, and
there’s certainly a limit to the size of word which can be held. So let’s consider an
alternative arrangement, shown in Figure 2. Here, each entry consists of a word
and a pointer to the next entry. The physical order of the entries no longer
matters, so that additional words can be added to the text simply by creating
cells for them and altering a couple of pointers (see Figure 3 ).

That deals neatly with the editing problem, but it still leaves us with the
difficulty of handling what are effectively fixed-length words. Suppose we revise
the structure of Figure 3 so that each entry consists not of a datum plus a pointer,
but two pointers. Now the left-hand pointer can point to a similar structure
which identifies a word and of course it can be any length, because we can signal

[ Lo [ot— = o+ o [oF—

\—->{ the Io—{—»{ mat *I

FIGURE 2. A better structure.
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[re Ithr—l cat | o—+ st [ofF— on [eg
L e [ met [ 7]
[ black [ o]

FIGURE 3. Adding the word ‘black’ now only entails some pointer manipulation.

[eled—{glet—{el -] L9l :

T h e c a t

FIGURE 4. A true list. Now words can be indefinitely long.

its end with some appropriate delimiting value for the pointer. We now have the
organization shown in Figure 4, where the delimiting pointer is an asterisk.

It’s clear that this is an immensely flexible structure, because there is nothing
in principle to prevent us from extending it indefinitely. Each pair of pointers
may point to other structures of the same general type, or to terminating
symbols. In this example, such symbols are either letters or null pointers, but
there are all sorts of other possibilities. Note, however, that while both pointers
can point to other structures, only left pointers can point to terminal symbols
and only right pointers can be null.

The structures we have been discussing are called lists. The terminal symbols
(here letters) are called atoms, because clearly they cannot be divided further.
(Yes, I know physicists are always splitting them, but that’s their fault for
choosing the word before finding out that they could do so. We will use the word
with its original meaning.)

Representing Lists

Clearly, the diagrammatic notation for a list of Figure 4 is inappropriate to a
computer language, although there are occasions when it can be a useful prop on
which to hang an idea and I shall use it from time to time in this book. Lisp
employs a simple symbolic notation. For example, the list of letters ‘A,B,C,D’ is
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written (A B C D) and can be visualized as Figure 5. Similarly, Figure 6 shows
the list ((a b) (c d €)). The Lisp form of the complete list of Figure 4 would be:
( (The) Ccat) (sat) Con) Cthe) (mat))

Note that spaces are used to separate atoms, but are otherwise insignificant.
Thus the spaces between brackets and those between brackets and atoms are not
necessary but do no harm.

IIIHvI*i——IYIFP———rM*I

A B C D

FIGURE 5. (A B C D).

0 ~—
Q <—r1t9

FIGUREG. ((ab)(cde)).

The Interpreter

We’re very nearly in a position actually to try something out. Enter your Lisp
interpreter. The syntax for this will be implementation dependent, but it will
probably involve invoking an executable file from disk, perhaps coupled with an
environment file. In any event, you should be greeted with a prompt which is
likely to be *>’.

It should come as no surprise that the interpreter will only accept atoms or lists
as input. So let’s give it a list. Type:

(D)

The interpreter will probably respond as soon as it sees the closing bracket (but
some implementations require you to hit RETURN):

NIL

What’s happened is this. The interpreter has accepted the list, which is empty,
and immediately evaluated it. Its value is NIL, which is a reserved Lisp atom
meaning either the empty list or the logical value FALSE. Since we’re at the top
level of the interpreter, Lisp has returned this value to us.



