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Shoichird Sakai

This is dedicated to Shoichirdé Sakai, for his brilliant solutions to many of the
key problems in the theory of operator algebras that gave us the means and
the courage to move ahead and for his inspired leadership in the development
of the crucially important theory of unbounded derivations.

With Gratitude and Respect from the Participants of the U.S.—Japan Joint
Seminar on Mappings of Operator Algebras



*“The results which we shall obtain throw light on an entirely new side
of operator theory.”’

F.J. Murray and J. von Neumann, 1936



Preface

This volume consists of articles contributed by participants at the fourth Ja-
pan-U.S. Joint Seminar on Operator Algebras. The seminar took place at the
University of Pennsylvania from May 23 through May 27, 1988 under the
auspices of the Mathematics Department. It was sponsored and supported by
the Japan Society for the Promotion of Science and the National Science
Foundation (USA). This sponsorship and support is acknowledged with
gratitude.

The seminar was devoted to discussions and lectures on results and prob-
lems concerning mappings of operator algebras (C*-and von Neumann alge-
bras). Among the articles contained in these proceedings, there are papers
dealing with actions of groups on C* algebras, completely bounded mappings,
index and subfactor theory, and derivations of operator algebras.

The seminar was held in honor of the sixtieth birthday of Shoichird Sakai,
one of the great leaders of Functional Analysis for many decades. This vol-
ume is dedicated to Professor Sakai, on the occasion of that birthday, with the
respect and admiration of all the contributors and the participants at the
seminar.

H. Araki
Kyoto, Japan

R. Kadison
Philadelphia, Pennsylvania, USA
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ON ConvExX COMBINATIONS
oF UNITARY OPERATORS IN C*-ALGEBRAS

UFFE HAAGERUP

1. INTRODUCTION

Let A be a unital C*-algebra. In [1], Gardner proved that if x € A and [|x|| < 1,
then
x + U(A) C U(A) + U(A),

where U(A) is the set of unitaries in A. Kadison and Pedersen discovered in [2]
that this inclusion together with a simple inductive argument led to the following

result:
Let neN,n23.If ye A and |yl <1-2, then y is of the form
y=%u+ ... +u), u; € U(A),

i.e: y is amean of n unitariesin A . The main result of this paper is

Theorem

*
Let A be a unital C -algebra andlet neN,n>3.If ye A and |y <1-2,
then

y=4u + ... + up)

for some wuy,...,up € U(A).
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This settles a conjecture of Olsen and Pedersen in [3]. The result is best possible for
general C*—algebras, because if y is a scalar multiple of a non—unitary isometry in a
C*—a.lgebra A and |ly|| >1-2, then.y is not the mean of n unitariesin A (cf.
[2]). For special C*—a.lgebras much stronger results hold. Rgrdam proved in [5] that
if the invertible operators are dense in A , then every operator x in the closed unit

ball of A is the mean of n unitariesin A forany n>3.

The above Theorem is well known and easy to prove for n = 4, and it was proved for
n =3 in [3]. Our proof of the general case i3 obtained by proving the following ana-

logue of Gardner's inclusion:
If xeA and |x|| <1, then

x+ 2P CU(A) + 2P
where P = {uh | ueU(A),heA+,||h||51}.
In the last section of the paper we study the case n = 3 more closely. It is proved
that for n =3, u;,u2 and ug can be chosen, such that the spectra of ufu, , ujus
and uju; are contained in the semicircle {eiy |0<w<7} . Moreover, if |ly|| < %, then
us € U(A) can be chosen freely and ug,us are then uniquely determined by the spec-
tral conditions above. This implies that for x € A , ||x]| < 1, there is a homeo-
morphism ®x of U(A), such that ®} =id and

x = u + ®x(u) + ®2(u)

for all ue U(A).

We wish to thank Gert K. Pedersen for suggesting a major simplification of the proof
of the spectral conditions in the key lemma (Lemma 1), which reduced the length of

the proof from 8 to 2 manuscript pages.
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2. THE MAIN RESULT

Lemma 1
Let A be a unital C*-algebra. Let x,h € A ||x|| < 1, ||h|| < 1, h > 0. Then

x+2h=u;+ ug + ug

where  uj,uz,u3 € U(A) and sp(uju,), sp(ufu;) are both contained in

(& -F<ven)

Proof. Write x = a + ib, where a,b € Ag,. Then
a2+ b2 = %(x*x + xx*) < 1.

Particularly [la]| <1 and ||b]| < 1. By [4, Prop. 1.3.8] the function t - t* is ope-

rator monotone on [0,0[ . Therefore

la] < (1-b2)%,
Hence
—(1b2)tcac(1-w2)t.
Put
1 P
c=%2h+a-(1-b2)?).
Then

h-(1-b2)<c<h
Particularly lc|l <1, and c+ (1-b2)* > 0.
Put

u=c-i(l —c2)%

uz = (1-b2)* +ib

u3=c+i(1-—c2)%.
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Then uy,ug,ug € U(A) and

u + ug + uzg = x + 2h.

(For h = 0, this choice of uj,us,us was used in the proof of [3, Thm. 4.3]).

To prove the conditions on the spectra of uju, and ujuy stated in the lemma, we

have to prove that if A = cos# + isinf, 0 < 0 < ; , then
— X ¢ sp(utu,) and - A ¢ sp(uuy).

Let A be as above and assume that — A € sp(ufu,). Then for some faithful represen-

tation of A on a Hilbert space H, there is a unit vector ¢ € H for which
ufuyf = (FA)E.

(cf. [4, 4.3.10]). Thus (u, + Au,)é = 0. Let ¢ be the vector state on A given by
& Then ¢(uz + Auy) = 0, or equivalently

o((1-b2)* + ib + (cosd + i sinf)(c —i(1-2)}) = 0.
By considering the real part, we get:
<p((1—b2)1" + cosf ¢ + sinf (1—c2)%) =0Q.
By rewriting the equation in the form
cosh p((1-b2)? + ¢) + (1-cos)p((1-b2)?)
+ sinf w((l—cz)%) =0
and using (1—b2)% +¢20, (1—b2)% >0, (1—c2)% >0, 0< 6 <7 onegets
A9 + ¢) = p((1-b2)}) = p((1-e)t) = 0.
If (s¢,€) =0 for some positive operator s € B(H), then also s¢ = 0. Therefore

(1) + )¢ = (1)t = (1-e)Pe = 0.
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Particularly cé = (1—(:2)%{ = (. This is a contradiction, because
legl? + (-c®)ellz = 1.
The spectral condition on ufug can be proved as above by using that
sp(ufu,) = sp(ugu}).
Indeed, if A = cosf + isind, 0 < 6 < er and — X € sp(ugu}), then we can find a

vector state ¢ on A, such that
o(uf + Aug) =0
and by taking the real part we get
o((1-b2)t + cosf ¢ + sinf(1-c2)?) = 0,

which is the same equality as in the previous case.

Lemma 2
Let A be a unital C*-algebra and let

P={uh | ueU(A),heA, ] <1}.
Then for every x € A, ||x|| <1 one has

x + 2P C U(A) + 2P.

Proof. Since the spectral condition in Lemma 1 is invariant under multiplication
from left (and right) with a fixed unitary, it follows that every z € x+2P is of the

form

Z=1U1 + ug + ug
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with sp(utu,) and sp(ujus) contained in F = {e" | = < v < 7). The branch of
the square root given by ei" - ew/ 2, - § < v <, is continuous on F. Hence there

exists v € U(A) such that

ujuy = v2
and

sp(v) € e ~Fev <
Put w = ugv* = ugv. Then

ug + ug = w(v + v¥),

and since sp(v) C {s | Res > 0}, we have v + v*2 0, so that uz + u3 € 2P. This

proves lemma 2.

Theorem

Let A be a unital C*-algebra, andlet n€N,n>3.If ye A and [ly|| <1 -2, then
y=3%u + ... +u)

for some uy,...,un € U(A).

Proof. Put x = 3% y. Then ||x|| < 1. By repeated use of lemma 2, we get

(n-2)x + 2P CU(A) 4+ ... + U(A) + 2P
n—2 times

But 2P C U(A) + U(A), because every selfadjoint operator h of norm less or equal
to 1 is the half sum of the two unitaries h?* i(l-—hﬁ)*. Hence

(o-2)x+2PCU(A) + ... +U(A).
n times




ON CONVEX COMBINATIONS 7
Since 0 € 2P, we get

y=n—;—2-X€%(g(A) + "‘,' + U(A)‘).
n times

3. ON THE SUM OF THREE UNITARIES

Proposition 1
Let A be a unital C*-algebra, and let x € A, ||x|| < 1. Then

X=u+ u + u3,

where uj,ug,u3 € U(A), and sp(ufuy), sp(usus), sp(ufu;) are contained in

{€”]0 < v < 7).

Proof. Let uy,us,us be as in lemma 1 with h =0, i.e.
x=a+1ib, abe As.a.
¢ = §a - (1-b2)})
and
y=c— i(l—-c2)%
) {u=(1-b2)} + ib

ug=c + i(1—c2)é

Recall from the proof of Lemma 1 that a < (l—bz)%. Hence c¢ < 0, and therefore

sp(ui) is contained in

{-e’j0<ve ).
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This implies that
2 iv
sp(ufu,) = sp(uf) C{e"|0 < v < n}.

To prove that sp(ufu,) and sp(ujus) are also contained in {e”]0 < v < 7} wecan

proceed as in the proof of lemma 1. From lemma 1 we already know that the two

spectra are contained in {e'”|- § < ¥ < 7}, 8o it remains to be proved that if

A =cosf + isind for <0< 7, then
-\ ¢ sp(ufu,) and -\ ¢ sp(ujug).
As in the proof of prop. 1, A € sp(u%u,) or —A € sp(ujug) would imply that
(*) o((1-b2)* + cosd ¢ + sind (1-c2)¥) = 0.
Since (1——b2)* 20, (l—c?)* 20,c<0,c080<0 and sinf > 0 it follows that
o((1-b2)}) = cosd p(c) = sinf p(1-c2)? = 0.
Particularly
P(1-09h) = p((1-e)h) = 0.
Since —(1-b2)? < a < (1-b2)*, we have
0 <— < (1-b2)h.

Hence also ¢(—c) = 0. We can assume that ¢ is a vector state (- ¢,£) for faithful

representation of A on a Hilbert space. Then
(-9t = (0 =0,
because (1—c2)* >0 and (—c) 2 0. This contradicts that

llegll2 + [I(1-c2)*e2 = 1.

Hence sp(uju,) and sp(ujus) are both contained in {ei"|0 <v<rh



