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TURBULENCE STRUCTURE AND
VORTEX DYNAMICS



The Isaac Newton Institute of Mathematical Sciences of the University of
Cambridge exists to stimulate research in all branches of the mathematical
sciences, including pure mathematics, statistics, applied mathematics, theo-
retical physics, theoretical computer science, mathematical biology and eco-
nomics. The research programmes it runs each year bring together leading
mathematical scientists from all over the world to exchange ideas through
seminars, teaching and informal interaction.
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Introduction

Leonardo da Vinci’s drawings of eddies below waterfalls, John Constable’s
paintings of swirling and disintegrating cloud shapes and L.F. Richardson’s
Swiftian rhyme all show different aspects of the essential nature of turbulence.
When expressed in prosaic scientific language the modern understanding of
turbulence is that it is a collection of weakly correlated vortical motions,
which, despite their intermittent and chaotic distribution over a wide range
of space and time scales, actually consist of local characteristic ‘eddy’ pat-
terns that persist as they move around under the influences of their own and
other eddies’ vorticity fields. Numerical simulations and experimental obser-
vations have now identified basic forms and even the ‘life-cycles’ of some of
these structures. Some of them, for example, seem to appear as local shear
layers, then evolve into vortex tubes and finally break up. In some cases
quite extreme distortion and interaction between vortices lead to very large
local velocities. These universal features occur in all highly turbulent fows.
However, because the largest scale eddies extend across the whole flow and
are strongly influenced by the boundary conditions they are not universal;
nevertheless they tend to have the same characteristic forms in each type of
turbulent flow.

In the Isaac Newton Institute (INI) programme on turbulence held be-
tween January and July 1999 there were several workshops and conferences
on different aspects of the subject. All of them succeeded in bringing together
physicists, engineers, mathematicians and experimentalists, as can be seen in
this and other volumes and review articles describing the programme (Voke,
Sandham & Kleiser 1999; Launder & Sandham 2000; Vassilicos 2000; Hunt,
Sandham, Vassilicos, Launder, Monkewitz & Hewitt 2000).

In the Symposium on Vortex Dynamics and Turbulence Structure there
were lectures and discussions on a number of key questions that have engaged
turbulence researchers for many years. What is the overall significance for
turbulent flows of vortical structures? How should one study their persistence
and characteristic structure; do they correspond to some kind of eigensolu-
tions of the basic equations or of some reduced form of these equations; what
are their geometrical statistics and their stability, given that they exist in a
chaotic environment with many other structures surrounding them? How do
they interact or not interact with each other and with surrounding turbu-
lence, and what are their dissipative properties? Are the near-singularities
of the turbulence or the conjectured finite-time singularities related to the
vortical or other (e.g. straining) structures, and if so what kind? What are
the Eulerian and Lagrangian properties of such structures, and how do their
conditional statistics relate to the well-established unconditional Eulerian and



X Introduction

Lagrangian statistics (e.g. spectra, energy cascades up- and down-scale, rel-
ative motions of particles) and the scaling properties of the entire flow? To
what extent can turbulence be represented in terms of space-filling functions
such as Fourier or Chebychev basis functions or is it necessary to work in
terms of localised functions such as wavelets.

The articles in this volume address all these questions. Most involve math-
ematical analysis, but some describe numerical simulations and experimental
results that focus on these questions. Some of the papers focused on the deter-
ministic kinds of vortical motion that characterise eddy motions, while others
also relate these studies to the overall statistics of the turbulent flows which
can be measured more readily than the details of individual eddies. Only one
paper is exclusively concerned with the statistical dynamics of turbulence.

Deterministic analyses were applied to isolated vortices, to their response
when subject to large scale rotational and irrotational straining, and to their
interaction with each other. In some situations large scale straining is a
reasonable ‘mean-field’ approximation for the average effects of all other vor-
tices. But in other situations it is necessary to consider specific interactions
between small numbers of vortices. Fukumoto & Moffatt analyse the effect
of viscosity on the motion of a vortex ring, and how the diffusion of vorticity
changes its motion. The straining of vortices are considered in three papers;
Gibbon, Galanti & Kerr consider the general mathematical properties of
the stretching and compression of vorticity, including the surprising fact that
its tendency to become a singularity at any point in the flow is related to the
overall properties of the flow.

There are many different ways that finite amplitude vortices can be stretched
and distorted, and Le Dizes presents an analysis of a new family of stretched
non-axisymmetric vortices. As elongated vortices are stretched and distorted
by external straining fields, oscillations and waves can develop and lead to the
formation of new structures and ultimately to the total breakdown into small
scale chaotic motion. The basic mechanisms of these ‘core dynamics’ are re-
viewed by Pradeep & Hussain. In some cases the external motions are
caused by adjacent vortices and then the instability and transformations are
coupled in a global sense, as shown in the experimental paper of Williamson,
Leweke & Miller. In ‘classical’ fluids such as air and water at ambient tem-
perature, the vorticity in a vortex diffuses out of vortices or is exchanged
when vortices interact as a result of molecular diffusion. In superfluids at
very low temperatures these diffusion processes do not occur and therefore
vortices move and interact with each other according to the theory of ideal
inviscid flow. However certain quantum effects also lead to dissipative phe-
nomena such as reconnection. This is the motivation of Barenghi’s paper
on ideal fluid turbulence and its relation to normal fluid turbulence.

Other papers here show how a combination of deterministic and statistical
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analyses of turbulent velocity fields is leading to a better understanding of
the qualitative characteristics of the eddy motion in turbulence as well as to
quantitative predictions. Much research is based on the assumption that this
is the key to improving the approximate models of turbulence (such as Large
Eddy Simulation and spectral models) and to assessing their accuracy and
range of application. Leonard analyses, following the earlier ideas of Synge &
Lin (1943), the dynamics and kinematics of small individual eddies or packets
of vorticity, strained by eddy motions with larger length scales. He explores
the limits when the lengths of the strained eddies become comparable with
the larger ones, and tend to form elongated and randomly twisted ‘ribbons’.
The consequences for the spectra are worked out.

Novikov explains why this dynamical interaction implies that small scale
turbulence may not be as statistically independent of the large scales as is
assumed in Kolmogorov’s theory; there may be fewer degrees of freedom and
some aspects of their motion may be ‘slaved’ to the larger scales on some
‘slow’ manifold. He derives some statistical conditions based on this concept.
However the eddy motions do need to be considered because they determine
the intermittency of turbulence which he explains as being crucial to the
interpretation of the overall turbulence statistics.

Warhaft’s discussion of experimental measurements of small scale tur-
bulence also takes up this theme. The higher the order of the statistical
moments the more they are anisotropic. These are associated with small
scale organised structures, in which there are strong local gradients in both
the velocity and scalar fields,. He demonstrates that the structures can be
defined more precisely if measurements are made at three rather than two
points simultaneously, which has been usual up to now.

Flow visualisation and experiments have indicated that these structures
are quite geometrically complex, often approximating to sheets of vorticity
and scalars wound up into spiral forms which correspond to a type of ideal
mathematical singularity. Vassilicos analyses such velocity fields and their
effects on the diffusion of scalars; he also shows how these types of eddy can
be detected when they occur at random positions in numerical simulations of
turbulent flows. He demonstrates how such structures are consistent with the
‘anomalous’ scaling laws found in statistical correlations in fully developed
turbulence.

Tsinober analyses the dynamical equations governing correlations be-
tween the straining and vorticity fields of small scale turbulence, in order
to clarify the relative roles of vortex stretching and straining, or relative ad-
vection, in producing even smaller scales and thence dissipation. His results
suggest that it may be necessary to consider a cycle of stretching and straining
of eddy motions to understand the full dynamics; indeed the simple, rather
static concept of vortex stretching is quite inconsistent with the production
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of smaller scales. Like Betchov in 1956 he has the temerity to propose an
amendment to L.F. Richardson’s rhyme about the roles of great whirls and
lesser whirls in the cascade process!

Hunt’s paper is similar to Leonard’s in assuming that the analysis of the
non-linear interactions in turbulence can be usefully idealised as a sequence
of events when small scale vortices are strained by large scale motions. He
discusses how the weakly non-linear effects cause the vortex sheets to roll up,
or become unstable. Curiously there is a geometrical problem to be solved:
how to define the changes in these shapes, which are associated with the cycle
of growth, transformation and breakup of small scale eddies, that Tsinober
analyses using statistical data in his paper. Hunt also reviews an outstand-
ing kinematical question about turbulence as to when and to what extent
spectra reflect on the one hand the forms of the eddies themselves, especially
their singularities, and on the other, the distribution of their amplitudes with
wavenumber (or frequency).

Cambon takes up the question, touched on by Hunt, that when vortices
are formed in turbulence, for example as a result of straining by larger scales,
various kinds of waves and instabilities tend to grow. He reviews and relates
a number of current mathematical techniques used for analysing these pertur-
bations. He points out how some are local and some global; some are based
on eigen solutions, while others are based on general linear solutions more
dependent on initial conditions. Many interesting special cases are described
in detail, and reasons are given why cyclonic eddies are more stable than
anticyclonic.

In numerical simulations the resolution is now fine enough for even small
scale flow structure to be described for high Reynolds number turbulence.
Lesieur, Comte and Metais use Large Eddy Simulation techniques to
examine the structure of the vortices that form in shear flows and rotating
flows. They explain how the vortices contribute to the statistical distribution
of kinetic energy in the turbulence, as well as describing in some detail how
the different scales and orientations of vortices are related in these chaotic
flows, which have a high degree of local organisation.

On long enough timescales it is likely that the internal eddy structure is
unimportant, in which case turbulence can be analysed rather like a visco-
elastic fluid, based on the concepts and methods of statistical physics. Mec-
Comb & Johnston use methods involving the Renormalisation Group. In
conjunction with novel assumptions about the statistical independence of the
small eddy scales, they derive quantitatively the energy spectrum of turbu-
lence and new results about the internal ‘eddy viscosity’ that controls the
energy transfer between eddy scales. These methods may well have wider
applications to more complex flows in future.

We, and we believe all the speakers at the workshop, are extremely grateful
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to Geoff Hewitt, Peter Monkewitz and Neil Sandham for their invaluable con-
tribution to the organisation of the Isaac Newton Institute’s Turbulence Re-
search Programme: to Keith Moffatt and the wonderful staff of the Isaac New-
ton Institute, ERCOFTAC, the European Commission, the Royal Academy
of Engineering and the Industrial Working Group under the chairmanship
of Michael Reeks, for their support; and to the Isaac Newton Institute for
sponsoring and hosting the workshops.
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Motion and Expansion of a Viscous
Vortex Ring: Elliptical Slowing Down
and Diffusive Expansion

Yasuhide Fukumoto and H.K. Moffatt

1 Introduction

The motion of a vortex ring is a venerable problem, and, since the attempts
of Helmholtz and Kelvin in the last century, extensive study has been made
on various dynamical aspects, such as formation, traveling speed, waves, in-
stability, interactions and so on. Concerning the steady solution for inviscid
dynamics, analytical technique has been matured enough to make a highly
nonlinear regime tractable. In contrast, the effect of viscosity on the nonlinear
dynamics is poorly understood even for an isolated vortex ring.

In this article, we present a large-Reynolds-number asymptotic theory
of the Navier-Stokes equations for the motion of an axisymmetric vortex
ring of small cross-section. Our intention is to make the nonlinear effect
amenable to analysis by constructing a framework for calculating higher-
order asymptotics. The nonlinearity is featured by deformation of the core
cross-section. We build a general formula for the translation speed incor-
porating the slowing-down effect caused by the elliptical deformation of the
core. Moreover we show that viscosity has the action of expanding the ring
radius, simultaneously with swelling the core; starting from an infinitely thin
circular loop of radius Rg, the radii Rs(t) of the loop of stagnation points
relative to a comoving frame, R,(t) of the loop of peak vorticity, R.(t) of the
centroid of vorticity all grow linearly in time ¢ as R, =~ Rg + 2.5902739vt/ Ry,
R, =~ Ro+4.5902739vt/ Ry, and R. =~ Ro+3vt/Ry. It is pointed out that the
asymptotic values of R, and R, exhibit a discrepancy, at a finite Reynolds
number, from the numerical result of Wang, Chu & Chang (1994).

To begin with, we briefly survey known results. Dyson (1893) (see also
Fraenkel 1972) extended Kelvin’s formula for the speed U of a thin axisym-
metric vortex ring, steadily translating in an inviscid incompressible fluid
of infinite extent, to third (virtually fourth) order in a small parameter
€ = /Ry, the ratio of core radius o to the ring radius Ry, as

r 8 1 32 8 5
U: 1 | — ] — — — — 1 —: i} = = () 541 .
41 Ry { o (E) 4 8 {og (8) 4} Ol OgE)} 7 L5
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where T is the circulation carried by the ring. The vorticity is assumed to be
in proportion to distance from the axis of symmetry. We consider Kelvin’s
formula (the first two terms) as the first-order and the O(e?)-terms as the
third. The local self-induced flow consists not only of a uniform flow but also
of a straining field. The latter manifests itself at O(e?) and deforms the core
into an ellipse, elongated in the propagating direction:

3e? 8 17
r—a{l—8—[log<g)—ﬁ]00529+---}, (1.2)

where (r, ) are local moving cylindrical coordinates about the core center
which will be introduced in §2. The inclusion of the third-order term in the
propagating velocity gives a remarkable improvement in approximation; (1.1)
compares well even with the exact value for the ‘fat’ limit of Hill’s spherical
vortex (Fraenkel 1972). In this limit, the parameter € is as large as v/2 under
a suitable normalisation. This surprising agreement encourages us to explore
a higher-order approximation in more general circumstances.

Viscosity acts to diffuse vorticity, and the motion ceases to be steady. Its
influence on the traveling speed, at large Reynolds number, was first addressed
by Tung & Ting (1967), using the matched asymptotic expansions, for the
case where the the vorticity is, at a virtual instant ¢ = 0, a ‘6-function’ con-
centrated on a circle of radius Ry. By a different method, Saffman (1970) suc-
ceeded in deriving an explicit formula, valid up to first order in ¢ = (v/I")1/2,
as

T 8RRy 1
U=——1]1 — —(1— log 2 1.3
4w30{0g<2 %> Hi-atlog ] ()

where v is the viscosity, t is the time, and v = 0.57721566 - - - is Euler’s con-
stant (see also Callegari & Ting 1978). Wang, Chu & Chang (1994) employed
a similar method to Tung & Ting (1967), but with a different choice v/t as
small parameter, and gained a correction to (1.3) originating from the viscous
diffusive effect. This correction vanishes in the limit of ¥ — 0. Unfortunately,
the existing asymptotic theories all assume a circular symmetric core with a
Gaussian distribution of vorticity. It implies that our knowledge of the non-
linear effect is restricted to O(e). For comprehensive lists of theories of vortex
rings, the article of Shariff & Leonard (1992) should be referred to.

Motivated by intriguing pattern variation of the dissipation field visualised
from numerical data of simulations of fully developed turbulence, Moffatt,
Kida & Ohkitani (1994) developed a large-Reynolds-number asymptotic the-
ory for a steady stretched vortex tube subjected to uniform non-axisymmetric
irrotational strain. They demonstrated that the higher-order asymptotics sat-
isfactorily account for the fine structure of the dissipation field previously ob-
tained by numerical computation (Kida & Ohkitani 1992). The corresponding
planar problem, though unsteady, is dealt with in a similar manner, and an
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extension of the result of Ting & Tung (1965) to a higher order was achieved
by Jiménez, Moffatt & Vasco (1996). The structure of the solutions have
much in common; at leading order, a columnar vortex with circular cores,
an exact solution of the Navier-Stokes equations, is obtained. A quadrupole
component enters at O(v/I'), which is realised as the deformation of the core
cross-section into an ellipse. The distinguishing feature is that the major
axis of the ellipse is aligned at 45° to the principal axis of the external stain.
This result leads us to expectat that the strained cross-section of a vortex
ring, observed in nature, is established as an equilibrium between self-induced
strain and viscous diffusion. Along the line of this scenario, we elucidate the
structure of this strained core and its influence on the traveling speed of an
axisymmetric vortex ring.

A powerful technique for our purpose is the method of matched asymp-
totic expansions. It has been previously developed to derive the velocity of
a slender curved vortex tube (see, for example, Ting & Klein 1991). How-
ever this method is limited to O(e?) (Moore & Saffman 1972: Fukumoto &
Miyazaki 1991). In the viscous case also, the self-induced strain, with the
resulting elliptical deformation of the core, makes its appearance at O(€?),
and its influences on the translation speed come up at O(e3). We are thus
requested to extend asymptotic expansions to a higher order.

In §2, we state the general problem. The existing asymptotic formula for
the potential flow associated with a circular vortex loop is not sufficient to
carry through our program. In order to work out the correct inner limit
of the outer solution, we devise, in §3, a technique to produce a systematic
asymptotic expression of the Biot-Savart integral accommodating an arbi-
trary vorticity distribution. In §4, the inner expansions are scrutinised to
O(e) and are extended to O(e?). Based on these, we demonstrate in §5.1
that the radii of the loops of the stagnation points, maximum vorticity and
vorticity centroid all grow linearly in time owing to the action of viscosity.
Thereafter, we establish in §5.2 a general formula for the translating velocity
of a vortex ring. In §6, an equation governing the temporal evolution of the
axisymmetric vorticity at O(e?) is derived, and an integral representation of
the exact solution is given, by which the formula of the preceding section can
be closed.

A few ambiguous steps lying in previous theories stand as obstacles to
proceeding to higher orders. These highlight the significance of the dipoles
distributed along the core centerline and oriented in the propagating direction.
It turns out that their strength needs to be prescribed at an initial instant,
which solves the problem of undetermined constants at O(€). As a by-product,
a clear interpretation is provided of the general mechanism of the self-induced
motion of a curved vortex tube. Because of the limitation of space, we must
omit the technical details. A comprehensive account of our theory will be
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available in the paper of Fukumoto & Moffatt (2000).

2 Formulation

Consider an axisymmetric vortex ring of circulation I' moving in an infinite
expanse of viscous fluid with kinematic viscosity v. We suppose that the
circulation Reynolds number Rer is very large:

Rer =T/u>1. (2.1)

Two length scales are available, namely, measures of the core radius o and the
ring radius Ry. Suppose that their ratio o/ Rg is very small. We focus atten-
tion on the translational motion of a ‘quasi-steady’ core. This means that we
exclude stable or unstable wavy motion and fast core-area waves. Then, ac-
cording to (1.1), the time-scale under question is of order Ry/(I'/ Ro) = R2/T.
The core spreads over this time to be of order o ~ (vt)'/? ~ (v/T')"/2Ry. Our
assumption of slenderness requires that the relevant small parameter e(< 1)

e=+/v/T. (2.2)

1S

P
O . %‘ 0

0 R(1) e
Figure 1

Choose cylindrical coordinates (p, @, z) with the z-axis along the axis of
symmetry and ¢ along the vortex lines as shown in Figure 1. We consider an
axisymmetric distribution of vorticity w = ((p, z)es localised about the circle



