
# UMTS SIGNALING

UMTS Interfaces, Protocols, Message Flows and Procedures Analyzed and Explained

**SECOND EDITION** 

R. KREHER

T. RÜDEBUSCH





TN929.5 K92 E.2

## **UMTS Signaling**

UMTS Interfaces, Protocols, Message Flows and Procedures Analyzed and Explained

**Second Edition** 

Ralf Kreher and Torsten Rüdebusch

Both of Tektronix Berlin GmbH & Co. KG Germany







John Wiley & Sons, Ltd

Copyright © 2007 Tektronix, Inc.

Published in 2007 by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wiley.com

Reprinted July 2007

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permeq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

#### Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Anniversary Logo Design: Richard J. Pacifico

#### British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-06533-4 (H/B)

Typeset in 10/12pt Times by TechBooks, New Delhi, India.

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

# **UMTS Signaling**

**Second Edition** 

#### **Preface**

The successful trial, deployment, operation, and troubleshooting of 3G or UMTS infrastructures and applications are some of the most exciting, fascinating, and challenging tasks in today's mobile communications. Interoperability, roaming, and QoS awareness between multi-operators and multi-technology network infrastructures are just a few of the problems that need to be met. In today's deployments of UMTS networks and in the trials of HSPA environments, five main categories of problems can be differentiated:

- 1. Network Element Instability
- 2. Network Element Interworking
- 3. Multi-Vendor Interworking (MVI)
- 4. Configuration Faults
- 5. Network Planning Faults

To meet these challenges, it is vital to understand and analyze the message flows associated with UMTS, including HSPA signaling.

UMTS Signaling focuses on providing an overview and reference to UMTS, details of the standards, the network architecture, and objectives and functions of the different interfaces and protocols. Furthermore, it comprehensively describes various procedures from Node B setup to different handover types in the UTRAN and the Core Network. This 2nd edition of UMTS Signaling has been enhanced and discusses the 3GPP Release 5, 6, and 7 enhancements, covers TD-SCDMA (TDD) and describes the basics of HSDPA/HSUPA. Additionally the call scenarios in Chapters 2 and 3 have been reworked and enhanced with e.g. HSPA, SIGTRAN, handover scenarios and many more. The focus on wireline interfaces is unique in the market. All signaling sequences are based upon UMTS traces from various UMTS networks (trial and commercial networks) around the world. With this book readers have access to the first universal UMTS protocol sequence reference, which enables quick differentiation of valid from invalid call control procedures. In addition, all the main signaling stages are explained – many of which are unclear in the standards so far – and valuable tips for protocol monitoring are provided.

What will you get out of UMTS Signaling?

- A comprehensive overview on UMTS UTRAN and Core Networks:
  - -latest updates for Release 4, 5, 6 and 7 features are included

xiv Preface

description of the real-world structure of the ATM transport network on Iub and Iu interfaces
 valuable tips and tricks for practical interface monitoring.

- An in-depth description of the tasks and functions of UMTS interfaces and protocols.
- A deep protocol knowledge improvement.
- The potential to analyze specific protocol messages.
- Support to reduce time and effort to detect and analyze problems.
- Explanations of how to locate problems in the network.
- Comprehensive descriptions and documentation of UMTS reference scenarios for different UMTS procedures:
  - -UTRAN signaling procedures.
- Description of RRC measurement procedures for radio network optimization.
- Analysis and explanation of PS calls with so-called channel-type switching, which is one of the most common performance problems of packet-switched services in today's 3G networks.
- SRNS Relocation scenarios including full descriptions of RANAP and RRC containers.
- More than 35 decoded message examples using Tektronix' protocol testers, which give a
  deep insight into control plane protocols on different layers:
  - Core Network signaling procedures.
- In-depth evaluations on mobility management, session management, and call control procedures.
- Example call flows of the CS domain including practical ideas for troubleshooting.
- Tunnel management on Gn interfaces.
- Mobility management using optional Gs interface.
- Discussion on core network switches (MSC, SGSN) and database (HLR, VLR) information exchange over the Mobile Application Part (MAP).
- A short introduction to 3G intelligent services with the CAMEL Application Part (CAP) protocol.
- A comprehensive description of Inter-MSC Handover procedures for 3G-3G, 3G-GSM, and GSM-3G handovers.
- A detailed description of RANAP, BSSAP, and RRC information.
- HSDPA signaling procedures.
- HSUPA signaling procedures.
- TDD/TD-SCDMA scenarios.
- Enhanced Handover scenarios.

UMTS Signaling readers should be familiar with UMTS technology at a fairly detailed level as the book is directed at UMTS experts, who need to analyze UMTS signaling procedures at the most detailed level. This is why only an introductionary overview section discusses the UMTS network architecture, the objectives and functions of the different interfaces, and the various UMTS protocols. Then the book leads right into the main part – the analysis of all the main signaling processes in a UMTS network, the so-called UMTS scenarios. All the main procedures – from Node B Setup to Hard Handover – are described and explained comprehensively.

The combination of a network of UMTS experts from many different companies around the world with Tektronix' many years of experience in protocol analysis has resulted in this Preface xv

unique book, compendium, and reference. I hope it will prove helpful for the successful implementation and deployment of UMTS.

Arif Kareem
General Manager
Monitoring and Protocol Test
Tektronix, Inc.

If you have any kind of feedback or questions feel free to send us an e-mail to umts-signaling@tektronix.com.

For help with acronyms or abbreviations, refer to the glossary at the end of this book.

#### Acknowledgments

The Tektronix Network Diagnostics Academy has already trained hundreds of students in UMTS and other mobile technologies and in testing mobile networks. The experience from this training and our close customer relations pointed towards a desperate need for book on UMTS Signaling.

We collected all the material available at Tektronix and provided by our partners at network equipment vendors and network operators, to include in this unique selection.

The authors would like to acknowledge the effort and time invested by all our colleagues at Tektronix who have contributed to this book.

Special thanks go to Simon Binar, Tektronix MPT Berlin, whose HSPA material was a brilliant foundation to start from. Also to Jens Irrgang, Tektronix MPT Berlin and Christian Villwock, Texas Instruments Berlin, for their co-authorship and their valuable advice and input for Section 1.6, "UMTS Security."

We must not forget Techcom Consulting Munich, for supporting us with content from their brilliant technical training material.

Without Juergen Placht (Sanchar GmbH) this book would not have existed. His unbelievable knowledge, experience, and efforts in preparing the very first slide sets for UMTS scenarios laid the basis for the book's material.

Additionally, the material that Magnar Norderhus, Hummingbird, Duesseldorf, prepared for the first UMTS Training for Tektronix was the very first source that we have "blown up" for Chapter 1 of this book.

Many thanks also go to Joerg Nestle Product Design, Munich, for doing a great job in the creation of all the graphics.

We would like to express thanks to Othmar Kyas, Director of Strategic Marketing of Tektronix ND, for his strong belief in the Tektronix Network Diagnostics Academy and in *UMTS Signaling*, and for challenging us to make this book become real.

Additional thanks go to Toni Piwonka-Corle and Martin Kuerzinger of Tektronix MPT Marketing Berlin for their strong support turning this 2nd edition of *UMTS Signaling* into reality.

Of course, we must not forget to thank Jennifer Beal, Sarah Hinton, Mark Hammond and the team at Wiley. They encouraged us to turn edition 2 into reality, and kept us moving, even though it took so much time to get all the permissions aligned with Tektronix.

Last but not least, a special "thank you" to our families and friends for their infinite patience and support throughout this project.

#### About the Authors

Ralf Kreher works as a Solution Architect for Tektronix' Mobile Protocol Test (MPT) business with a focus on UMTS Performance Measurement and Key Performance Indicator (KPI) implementation. Previously he was head of the MPT Customer Training Department for almost four years and was responsible for a world-class seminar portfolio for mobile technologies and measurement products. Before joining Tektronix, Kreher held a trainer assignment for switching equipment at Teles AG, Berlin.

Kreher holds a Communication Engineering Degree of the University of Applied Science, Deutsche Telekom Leipzig. He is internationally recognized as an author of the following books: *UMTS Signaling* (Wiley) and *UMTS Performance Measurement*. A Practical Guide to KPIs for the UTRAN Environment (Wiley). He currently resides in Germany.

**Torsten Rüdebusch,** Marcom Program Manager, Network Diagnostics, Tektronix, Inc., is responsible for outbound marketing activities of the Network Diagnostics product line. Previously he led the Knowledgeware and Training Department for Tektronix' Mobile Protocol Test (MPT) business. There he was responsible for providing leading-edge technology and product seminars and the creation of knowledgeware products using Tektronix' extensive expertise. Before joining Tektronix, he held an application engineer assignment at Siemens CTE. He holds a Communication Engineering Degree from the Technical College Deutsche Telekom Berlin. Rüdebusch is internationally recognized as an author of the book *UMTS Signaling* (Wiley). He currently resides in Germany.

### Contents

| Preface                            |                                                     | xii  |
|------------------------------------|-----------------------------------------------------|------|
| Acknowledgments  About the Authors |                                                     | xvii |
|                                    |                                                     | xix  |
| 1                                  | UMTS Basics                                         | 1    |
|                                    | 1.1 Standards                                       | 2    |
|                                    | 1.2 Network Architecture                            | 4    |
|                                    | 1.2.1 GSM                                           | 4    |
|                                    | 1.2.2 UMTS Release 99                               | 5    |
|                                    | 1.2.3 UMTS Release 4                                | 7    |
|                                    | 1.2.4 UMTS Release 5                                | 8    |
|                                    | 1.2.5 HSPA                                          | 12   |
|                                    | 1.2.6 UMTS Release 6                                | 21   |
|                                    | 1.2.7 UMTS Release 7 and Beyond                     | 24   |
|                                    | 1.2.8 TD-SCDMA                                      | 26   |
|                                    | 1.3 UMTS Interfaces                                 | 28   |
|                                    | 1.3.1 Iu Interface                                  | 28   |
|                                    | 1.3.2 Iub Interface                                 | 29   |
|                                    | 1.3.3 Iur Interface                                 | 29   |
|                                    | 1.4 UMTS Domain Architecture                        | 31   |
|                                    | 1.5 UTRAN                                           | 31   |
|                                    | 1.5.1 RNC                                           | 33   |
|                                    | 1.5.2 Node B                                        | 35   |
|                                    | 1.5.3 Area Concept                                  | 35   |
|                                    | 1.5.4 UMTS User Equipment and USIM                  | 36   |
|                                    | 1.5.5 Mobiles                                       | 38   |
|                                    | 1.5.6 QoS Architecture                              | 39   |
|                                    | 1.6 UMTS Security                                   | 41   |
|                                    | 1.6.1 Historic Development                          | 41   |
|                                    | 1.6.2 UMTS Security Architecture                    | 46   |
|                                    | 1.6.3 Authentication and Key Agreement (AKA)        | 48   |
|                                    | 1.6.4 Kasumi/Misty                                  | 53   |
|                                    | 1.6.5 Integrity – Air Interface Integrity Mechanism | 55   |

|      | 1.6.6       | Confidentiality - Encryption (Ciphering) on Uu and Iub | 58 |
|------|-------------|--------------------------------------------------------|----|
|      | 1.6.7       | UMTS Network Transactions                              | 63 |
| 1.7  |             | Interface Basics                                       | 63 |
|      |             | Duplex Methods                                         | 64 |
|      | 1.7.2       | Multiple Access Methods                                | 64 |
|      | 1.7.3       | UMTS CDMA                                              | 65 |
|      | 1.7.4       | CDMA Spreading/Channelization                          | 66 |
|      | 1.7.5       | Microdiversity – Multipath (FDD and TDD)               | 67 |
|      | 1.7.6       | Microdiversity – Softer Handover (FDD)                 | 67 |
|      | 1.7.7       | Macrodiversity – Soft Handover (FDD)                   | 68 |
|      |             | UMTS Spreading (FDD and TDD)                           | 68 |
|      |             | Scrambling                                             | 69 |
|      | 1.7.10      | Coding Summary (FDD)                                   | 69 |
|      | 1.7.11      | Signal to Interference (FDD)                           | 69 |
|      | 1.7.12      | Cell Breathing (FDD)                                   | 70 |
|      | 1.7.13      | UMTS Channels (FDD and TDD)                            | 72 |
|      | 1.7.14      | Transport Channels (FDD and TDD)                       | 74 |
|      | 1.7.15      | Common Transport Channels (FDD and TDD)                | 74 |
|      | 1.7.16      | Dedicated Transport Channels (FDD and TDD)             | 75 |
|      | 1.7.17      | Initial UE Radio Access (FDD)                          | 76 |
|      | 1.7.18      | Power Control (FDD and TDD)                            | 77 |
|      | 1.7.19      | UE Random Access (FDD)                                 | 79 |
|      | 1.7.20      | Power Control in Soft Handover (FDD)                   | 80 |
| 1.8  | <b>UMTS</b> | Network Protocol Architecture                          | 81 |
|      | 1.8.1       | Iub – Control Plane                                    | 82 |
|      | 1.8.2       | Iub – User Plane                                       | 83 |
|      | 1.8.3       | Iur – User/Control Plane                               | 84 |
|      |             | luCS – User/Control Plane                              | 85 |
|      | 1.8.5       | IuPS – User/Control Plane                              | 86 |
|      | 1.8.6       | E – User/Control Plane                                 | 86 |
|      | 1.8.7       | Gn – User/Control Plane                                | 87 |
| 1.9  | SIGTR       | AN                                                     | 87 |
| 1.10 | ATM         |                                                        | 89 |
|      |             | ATM Cell                                               | 90 |
|      |             | ATM Layer Architecture                                 | 91 |
|      |             | ATM Adaption Layer (AAL)                               | 91 |
|      | 1.10.4      |                                                        | 92 |
|      | 1.10.5      |                                                        | 92 |
| 1.11 |             | lane Framing Protocol                                  | 93 |
|      |             | Frame Architecture                                     | 93 |
|      |             | FP Control Frame Architecture                          | 94 |
| 1.12 |             | m Access Protocol (MAC)                                | 95 |
|      |             | MAC Architecture                                       | 95 |
|      |             | MAC Data PDU                                           | 96 |
|      | 1.12.3      | MAC Header Alternatives                                | 98 |

Contents

| 1.13  | Radio Link Control (RLC)                                                           | 98  |
|-------|------------------------------------------------------------------------------------|-----|
|       | 1.13.1 RLC Services                                                                | 99  |
|       | 1.13.2 RLC Functions                                                               | 100 |
|       | 1.13.3 RLC Architecture                                                            | 102 |
|       | 1.13.4 RLC Data PDUs                                                               | 103 |
|       | 1.13.5 Other RLC PDUs                                                              | 104 |
| 1.14  | Service Specific Connection Oriented Protocol (SSCOP)                              | 104 |
|       | 1.14.1 Example SSCOP                                                               | 105 |
| 1.15  | Service Specific Coordination Function (SSCF)                                      | 106 |
|       | Message Transfer Part Level 3 – Broadband (MTP3-B)                                 | 106 |
| 1.17  | Internet Protocol (IP)                                                             | 107 |
|       | 1.17.1 IPv4 Frame Architecture                                                     | 108 |
|       | Signaling Transport Converter (STC)                                                | 108 |
| 1.19  | Signaling Connection Control Part (SCCP)                                           | 109 |
|       | 1.19.1 Example SCCP                                                                | 110 |
| 1.20  | Abstract Syntax Notation One (ASN.1) in UMTS                                       | 111 |
|       | 1.20.1 ASN.1 BER                                                                   | 111 |
|       | 1.20.2 ASN.1 PER                                                                   | 112 |
| 1.21  | Radio Resource Control (RRC)                                                       | 112 |
|       | 1.21.1 RRC States (3GPP 25.331)                                                    | 113 |
|       | 1.21.2 System Information Blocks (SIBs)                                            | 118 |
| 1.22  | Node B Application Part (NBAP)                                                     | 124 |
|       | 1.22.1 NBAP Functions                                                              | 124 |
|       | 1.22.2 NBAP Elementary Procedures (EPs)                                            | 125 |
| 1 00  | 1.22.3 Example – NBAP                                                              | 126 |
| 1.23  | Radio Network Subsystem Application Part (RNSAP)                                   | 126 |
|       | 1.23.1 RNSAP Functions                                                             | 126 |
| 1 0 1 | 1.23.2 Example – RNSAP Procedures                                                  | 127 |
| 1.24  | Radio Access Network Application Part (RANAP)                                      | 128 |
|       | 1.24.1 RANAP Elementary Procedures (EPs)                                           | 129 |
| 1 25  | 1.24.2 Example – RANAP Procedure                                                   | 131 |
| 1.23  | ATM Adaptation Layer Type 2 – Layer 3 (AAL2L3/ALCAP                                |     |
|       | 1.25.1 AAL2L3 Message Format                                                       | 131 |
| 1 26  | 1.25.2 Example – AAL2L3 Procedure IU User Plane Protocol                           | 132 |
| 1.20  |                                                                                    | 134 |
|       | 1.26.1 Iu UP Transparent Mode                                                      | 134 |
|       | 1.26.2 Iu UP Support Mode Data Frames                                              | 134 |
|       | 1.26.3 Iu UP Support Mode Control Frames                                           | 136 |
| 1 27  | 1.26.4 Example – Iu UP Support Mode Message Flow<br>Adaptive Multirate (AMR) Codec | 136 |
| 1.2/  | 1.27.1 AMR IF1 Frame Architecture                                                  | 136 |
| 1 28  | Terminal Adaptation Function (TAF)                                                 | 138 |
|       | Radio Link Protocol (RLP)                                                          | 138 |
|       | Packet Data Convergence Protocol (PDCP)                                            | 139 |
| 0     | 1.30.1 PDCP PDU Format                                                             | 140 |
|       | 1.00.1 1DOI IDO IOIIIIII                                                           | 140 |

viii Contents

|   | 1.31                 | Broadcast/Multicast Control (BMC)                                                                                                                                                     | 141               |  |  |
|---|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|
|   |                      | 141                                                                                                                                                                                   |                   |  |  |
|   | 1.32                 | 1.31.1 BMC Architecture 1.32 Circuit-Switched Mobility Management (MM)                                                                                                                |                   |  |  |
|   |                      | <ul> <li>1.33 Circuit-Switched Call Control (CC)</li> <li>1.34 Example – Mobile Originated Call (Circuit Switched)</li> <li>1.35 Packet-Switched Mobility Management (GMM)</li> </ul> |                   |  |  |
|   |                      |                                                                                                                                                                                       |                   |  |  |
|   |                      |                                                                                                                                                                                       |                   |  |  |
|   |                      | 36 Packet-Switched Session Management (SM)                                                                                                                                            |                   |  |  |
|   |                      | 1.37 Example – Activate PDP Context (Packet Switched)                                                                                                                                 |                   |  |  |
| 2 | Shor                 | t Introduction to Network Monitoring, Troubleshooting, and                                                                                                                            |                   |  |  |
| _ | Network Optimization |                                                                                                                                                                                       |                   |  |  |
|   | 2.1                  | Iub Monitoring                                                                                                                                                                        | <b>147</b><br>147 |  |  |
|   | 2.1                  | 2.1.1 IMA                                                                                                                                                                             | 147               |  |  |
|   |                      | 2.1.2 Fractional ATM                                                                                                                                                                  | 148               |  |  |
|   |                      | 2.1.3 Load Sharing and Addressing on Iub                                                                                                                                              | 149               |  |  |
|   |                      | 2.1.4 Troubleshooting Iub Monitoring Scenarios                                                                                                                                        | 150               |  |  |
|   | 2.2                  | Iu Monitoring                                                                                                                                                                         | 151               |  |  |
|   | 2.2                  | 2.2.1 Troubleshooting Iu Monitoring                                                                                                                                                   | 154               |  |  |
|   | 2.3                  | Network Optimization and Network Troubleshooting                                                                                                                                      | 155               |  |  |
|   | 2.5                  | 2.3.1 Cell-related Performance Relevant Data                                                                                                                                          | 159               |  |  |
|   |                      | 2.3.2 Call-related Performance Relevant Data                                                                                                                                          | 164               |  |  |
|   |                      | 2.3.2 Can-related respondence Relevant Data                                                                                                                                           | 101               |  |  |
| 3 | UM'                  | TS UTRAN Signaling Procedures                                                                                                                                                         | 171               |  |  |
|   | 3.1                  | Iub – Node B Setup                                                                                                                                                                    | 172               |  |  |
|   |                      | 3.1.1 Overview                                                                                                                                                                        | 172               |  |  |
|   |                      | 3.1.2 Message Flow                                                                                                                                                                    | 173               |  |  |
|   | 3.2                  | Iub – IMSI/GPRS Attach Procedure                                                                                                                                                      | 191               |  |  |
|   |                      | 3.2.1 Overview                                                                                                                                                                        | 191               |  |  |
|   |                      | 3.2.2 Message Flow                                                                                                                                                                    | 192               |  |  |
|   | 3.3                  | Iub CS – Mobile Originated Call                                                                                                                                                       | 205               |  |  |
|   |                      | 3.3.1 Overview                                                                                                                                                                        | 206               |  |  |
|   |                      | 3.3.2 Message Flow                                                                                                                                                                    | 207               |  |  |
|   | 3.4                  | Iub CS – Mobile Terminated Call                                                                                                                                                       | 217               |  |  |
|   |                      | 3.4.1 Overview                                                                                                                                                                        | 217               |  |  |
|   |                      | 3.4.2 Message Flow                                                                                                                                                                    | 219               |  |  |
|   | 3.5                  | Iub PS – PDP Context Activation/Deactivation                                                                                                                                          | 223               |  |  |
|   |                      | 3.5.1 Overview                                                                                                                                                                        | 225               |  |  |
|   |                      | 3.5.2 Message Flow                                                                                                                                                                    | 226               |  |  |
|   | 3.6                  | Iub – IMSI/GPRS Detach Procedure                                                                                                                                                      | 235               |  |  |
|   |                      | 3.6.1 Overview                                                                                                                                                                        | 235               |  |  |
|   |                      | 3.6.2 Message Flow                                                                                                                                                                    | 236               |  |  |
|   | 3.7                  | RRC Measurement Procedures                                                                                                                                                            | 239               |  |  |
|   |                      | 3.7.1 RRC Measurement Types                                                                                                                                                           | 239               |  |  |
|   |                      | 3.7.2 Cell Categories                                                                                                                                                                 | 239               |  |  |
|   |                      |                                                                                                                                                                                       |                   |  |  |

ix

|   |      | 3.7.3 Measurement Initiation for Intrafrequency Measurement       | 240 |
|---|------|-------------------------------------------------------------------|-----|
|   |      | 3.7.4 Intrafrequency Measurement Events                           | 241 |
|   |      | 3.7.5 Intrafrequency Measurement Report                           | 244 |
|   |      | 3.7.6 Intrafrequency Measurement Modification                     | 245 |
|   |      | 3.7.7 Measurement Initiation for Interfrequency Measurement       | 247 |
|   |      | 3.7.8 Further RRC Measurement Groups                              | 248 |
|   |      | 3.7.9 Changing Reporting Conditions After Transition to CELL_FACH | 249 |
|   | 3.8  | Iub – Physical Channel Reconfiguration (PDPC)                     | 250 |
|   |      | 3.8.1 Message Flow                                                | 251 |
|   | 3.9  | Channel Type Switching                                            | 259 |
|   |      | 3.9.1 Overview                                                    | 259 |
|   |      | 3.9.2 Message Flow                                                | 261 |
|   | 3.10 | Iub – Mobile-Originated Call with Soft Handover (Inter-Node B,    |     |
|   |      | Intra-RNC)                                                        | 272 |
|   |      | 3.10.1 Overview                                                   | 272 |
|   |      | 3.10.2 Message Flow (Figure 3.70)                                 | 273 |
|   | 3.11 | Iub – Softer Handover                                             | 286 |
|   |      | 3.11.1 Overview                                                   | 286 |
|   |      | 3.11.2 Message Flow                                               | 287 |
|   | 3.12 | Iub Interfrequency Hard Handover FDD                              | 290 |
|   |      | 3.12.1 Interfrequency Hard Handover Overview                      | 291 |
|   |      | 3.12.2 FDD Interfrequency Inter-Node B Hard Handover Call Flow    | 292 |
|   | 3.13 | RRC Measurements in Compressed Mode and Typical Call Drop         | 296 |
|   |      | 3.13.1 Message Flow                                               | 296 |
|   | 3.14 | High Speed Downlink Packet Access (HSDPA)                         | 301 |
|   |      | 3.14.1 HSDPA Cell Setup                                           | 302 |
|   |      | 3.14.2 HSDPA Basic Call                                           | 304 |
|   |      | 3.14.3 Mobility Management and Handover Procedures in HSDPA       | 310 |
|   |      | 3.14.4 Troubleshooting HSDPA Calls                                | 318 |
|   |      | 3.14.5 Proprietary Descriptions of HSDPA Call/Mobility Scenarios  | 320 |
|   | 3.15 | High Speed Uplink Packet Access (HSUPA)                           | 323 |
|   |      | 3.15.1 HSUPA Cell Setup                                           | 324 |
|   |      | 3.15.2 HSUPA Call Scenarios                                       | 325 |
|   |      | 3.15.3 HSUPA Basic Call                                           | 328 |
|   | 3.16 | NBAP Measurements                                                 | 330 |
|   |      | 3.16.1 NBAP Common Measurements                                   | 331 |
|   |      | 3.16.2 NBAP Dedicated Measurements                                | 334 |
| 4 | TDD  | (TD-SCDMA) Iub Signaling Procedures                               | 339 |
|   | 4.1  | TD-SCDMA Radio Interface Structure and Radio Resource Allocation  | 340 |
|   |      | 4.1.1 TD-SCDMA Mobile Originated Speech Call Setup                | 343 |
|   |      | 4.1.2 RRC Measurements in TD-SCDMA Radio Mode                     | 349 |
|   |      | 4.1.3 Intra-Cell Interfrequency Handover in TD-SCDMA              | 352 |
|   |      | 4.1.4 Inter-Cell Interfrequency Handover                          | 353 |
|   |      | 4.1.5 Multi-Service Call CS/PS with Inter-Node B Handover         | 356 |
|   |      |                                                                   |     |

x Contents

| 5 | Iu aı | nd Iur Signaling Procedures                                   | 363 |
|---|-------|---------------------------------------------------------------|-----|
|   | 5.1   | Iub-Iu – Location Update                                      | 363 |
|   |       | 5.1.1 Message Flow                                            | 364 |
|   | 5.2   | Iub-Iu – Mobile-Originated Call                               | 370 |
|   |       | 5.2.1 Overview                                                | 370 |
|   |       | 5.2.2 Message Flow                                            | 372 |
|   | 5.3   | Iub-Iu – Mobile-Terminated Call                               | 378 |
|   |       | 5.3.1 Overview                                                | 378 |
|   |       | 5.3.2 Message Flow                                            | 379 |
|   | 5.4   | Iub-Iu – Attach                                               | 384 |
|   |       | 5.4.1 Overview                                                | 384 |
|   |       | 5.4.2 Message Flow                                            | 385 |
|   | 5.5   | Iub-Iu – PDPC Activation/Deactivation                         | 387 |
|   |       | 5.5.1 Overview                                                | 387 |
|   |       | 5.5.2 Message Flow                                            | 388 |
|   | 5.6   | Streaming PS Service and Secondary PDP Context                | 394 |
|   |       | 5.6.1 Message Flow                                            | 395 |
|   | 5.7   | Iub-Iu – Detach                                               | 398 |
|   |       | 5.7.1 Overview                                                | 398 |
|   |       | 5.7.2 Message Flow                                            | 399 |
|   | 5.8   | Iub-Iur – Soft Handover (Inter-Node B, Inter-RNC)             | 401 |
|   |       | 5.8.1 Overview                                                | 401 |
|   |       | 5.8.2 Message Flow                                            | 402 |
|   | 5.9   | Iub-Iu – RRC Re-Establishment (Inter-Node B, Inter-RNC)       | 412 |
|   |       | 5.9.1 Overview                                                | 412 |
|   |       | 5.9.2 Message Flow                                            | 414 |
|   | 5.10  | SRNS Relocation (UE not Involved)                             | 419 |
|   |       | 5.10.1 Overview                                               | 420 |
|   |       | 5.10.2 Message Flow                                           | 421 |
|   | 5.11  | SRNS Relocation (UE Involved)                                 | 426 |
|   |       | 5.11.1 Overview                                               | 427 |
|   |       | 5.11.2 Message Flow                                           | 429 |
|   | 5.12  | Short Message Service (SMS) in UMTS Networks                  | 437 |
|   |       | 5.12.1 SMS Network Architecture Overview                      | 437 |
|   |       | 5.12.2 SMS Protocol Architecture                              | 438 |
|   |       | 5.12.3 Mobile-Originated Short Message                        | 439 |
|   |       | 5.12.4 Mobile-Terminated Short Message                        | 446 |
| 6 | Sign  | aling Procedures in the 3G Core Network                       | 453 |
|   | 6.1   | ISUP/BICC Call Setup                                          | 453 |
|   |       | 6.1.1 Address Parameters for ISUP/BICC Messages               | 454 |
|   |       | 6.1.2 ISUP Call (Successful)                                  | 454 |
|   |       | 6.1.3 ISUP Call (Unsuccessful)                                | 455 |
|   |       | 6.1.4 BICC Call Setup on E Interface Including IuCS Signaling | 458 |
|   | 6.2   | Gn Interface Signaling                                        | 462 |
|   |       | 6.2.1 PDF Context Creation on Gn (GTP-C and GTP-U)            | 464 |

Contents xi

|          | 6.2.2   | GTP-C Location Management                                       | 465 |
|----------|---------|-----------------------------------------------------------------|-----|
|          | 6.2.3   |                                                                 | 465 |
|          | 6.2.4   | SGSN Relocation                                                 | 467 |
|          | 6.2.5   | Example GTP                                                     | 467 |
| 6.3      | Procee  | dures on the Gs Interface                                       | 469 |
|          | 6.3.1   | Location Update via Gs                                          | 469 |
|          | 6.3.2   | Detach Indication via Gs                                        | 470 |
|          | 6.3.3   | Paging via Gs                                                   | 470 |
| 6.4      | Signal  | ling on Interfaces Toward HLR                                   | 470 |
|          | 6.4.1   | Addressing on MAP Interfaces                                    | 472 |
|          | 6.4.2   |                                                                 | 473 |
|          | 6.4.3   | MAP Signaling Example                                           | 475 |
| 6.5      |         | 3G_MSC Handover Procedure                                       | 477 |
|          | 6.5.1   | Inter-3G_MSC Handover Overview                                  | 480 |
|          |         | Inter-3G_MSC Handover Call Flow                                 | 482 |
| 6.6      | Inter-3 | 3G-2G-3G_MSC Handover Procedure                                 | 486 |
|          | 6.6.1   | Inter-3G-2G_MSC Handover/Relocation Overview (Figure 6.42)      | 489 |
|          | 6.6.2   | Inter-3G-2G_MSC Handover Call Flow                              | 490 |
|          | 6.6.3   | Inter-3G-2G_MSC Handover Messages on E Interface                | 494 |
|          | 6.6.4   | Inter-2G-3G_MSC Handover/Relocation Overview                    | 495 |
|          | 6.6.5   | Inter-2G-3G_MSC Subsequent Handover Messages on the E Interface | 500 |
|          | 6.6.6   | 2G-3G CS Inter-RAT Handover on IuCS and Iub Interface           | 501 |
|          | 6.6.7   | PS Inter-RAT Mobility                                           | 506 |
| 6.7      | Custon  | mized Application for Mobile Network Enhanced Logic (CAMEL)     | 509 |
|          | 6.7.1   | IN/CAMEL Network Architecture                                   | 510 |
|          | 6.7.2   | CAMEL Basic Call State Model                                    | 511 |
|          | 6.7.3   | Charging Operation Using CAMEL                                  | 512 |
|          | 6.7.4   | CAMEL Signaling Example for GPRS Charging                       | 513 |
| 6.8      |         | Itimedia Subsystem (IMS)                                        | 517 |
|          | 6.8.1   | IMS PDP Context Activation Basics                               | 517 |
|          | 6.8.2   | IMS UE-UE Call Basics                                           | 518 |
| Glossar  | y       |                                                                 | 521 |
| Bibliogr | aphy    |                                                                 | 537 |
| Index    |         |                                                                 | 541 |

## 1

#### **UMTS Basics**

UMTS is real. In a continuously growing number of countries we can walk in the stores of mobile network operators or resellers and take UMTS PC cards or even third-generation (3G) phones home and use them instantly. Every day the number of equipments and their feature sets gets broader. The "dream" of multimedia on mobile connections, online gaming, video conferencing, real-time video or even mobile TV becomes reality.

With rapid technical innovation the mobile telecommunication sector has continued to grow and evolve strongly.

The technologies used to provide wireless voice and data services to subscribers, such as Time Division Multiple Access (TDMA), Universal Mobile Telecommunications System (UMTS), and Code Division Multiple Access (CDMA), continue to grow in their complexity. This complexity imparts a time-consuming hurdle to overcome when moving from 2G to 2.5G and then to 3G networks.

GSM (Global System for Mobile Communication) is the most widely installed wireless technology in the world. Some estimates put GSM market share above 80 %. Long dominant in Europe, GSM has a foothold in Latin America and is expanding its penetration in the North American market.

One reason for this trend is the emergence of reliable, profitable 2.5G General Packet Radio Service GPRS elements and services. Adding a 2.5G layer to the existing GSM foundation has been a cost-effective solution to current barriers while still bringing desired data services to market. The enhancement to EGPRS (Enhanced GPRS) allows a maximum speed of 384 kbps. However, now EDGE (EDGE; Enhanced Data Rates for GSM Evolution) is under pressure, because High Speed Downlink Packet Access (HSDPA; see Section 1.2.3) and its speed of 2 Mbps will take huge parts of the market share once it becomes more widely available.

So, the EGPRS operators will sooner or later switch to 3G UMTS services (Figure 1.1), the latest of which is UMTS Release 7 (Rel. 7). This transition brings new opportunities and testing challenges, in terms of both revenue potential and addressing interoperability issues to ensure QoS (Quality of Service).

With 3G mobile networks, the revolution of mobile communication has begun. 4G and 5G networks will make the network transparent to the user's applications. In addition to horizontal handovers (for example between Node Bs), handovers will occur vertically between