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Preface

I have made some substantial changes in this new edition of Introductory Combi-
natorics, and they are summarized as follows:

In Chapter 1, a new section (Section 1.6) on mutually overlapping circles has been
added to illustrate some of the counting techniques in later chapters. Previously
the content of this section occured in Chapter 7.

The old section on cutting a cube in Chapter 1 has been deleted, but the content
appears as an exercise.

Chapter 2 in the previous edition (The Pigeonhole Principle) has become Chap-
ter 3. Chapter 3 in the previous edition, on permutations and combinations, is
now Chapter 2. Pascal’s formula, which in the previous edition first appeared
in Chapter 5, is now in Chapter 2. In addition, we have de-emphasized the use
of the term combination as it applies to a set, using the essentially equivalent
term of subset for clarity. However, in the case of multisets, we continue to use
combination instead of, to our mind, the more cumbersome term submultiset.

Chapter 2 now contains a short section (Section 3.6) on finite probability.
Chapter 3 now contains a proof of Ramsey’s theorem in the case of pairs.

Some of the biggest changes occur in Chapter 7, in which generating functions
and exponential generating functions have been moved to earlier in the chapter
(Sections 7.2 and 7.3) and have become more central.

The section on partition numbers (Section 8.3) has been expanded.

Chapter 9 in the previous edition, on matchings in bipartite graphs, has under-
gone a major change. It is now an interlude chapter (Chapter 9) on systems of
distinct representatives (SDRs)—the marriage and stable marriage problems—
and the discussion on bipartite graphs has been removed.

As a result of the change in Chapter 9, in the introductory chapter on graph
theory (Chapter 11), there is no longer the assumption that bipartite graphs
have been discussed previously.

The chapter on more topics of graph theory (Chapter 13 in the previous edition)
has been moved to Chapter 12. A new section on the matching number of a
graph (Section 12.5) has been added in which the basic SDR. result of Chapter
9 is applied to bipartite graphs.



vi Preface

The chapter on digraphs and networks (Chapter 12 in the previous edition) is
now Chapter 13. It contains a new section that revisits matchings in bipartite
graphs, some of which appeared in Chapter 9 in the previous edition.

In addition to the changes just outlined, for this fifth edition, I have corrected all
of the typos that were brought to my attention; included some small additions; made
some clarifying changes in exposition throughout; and added many new’ exercises.
There are now 700 exercises in this fifth edition.

Based on comments I have received over the years from many people, this book
seems to have passed the test of time. As a result I always hesitate to make too
many changes or to add too many new topics. I don't like books that have “too many
words” (and this preface will not have too many words) and that try to accomodate
everyone's personal preferences on topics. Nevertheless, I did make the substantial
changes described previously because I was convinced they would improve the book.

As with all previous editions, this book can be used for either a one- or two-
semester undergraduate course. A first semester could emphasize counting, and a
second semester could emphasize graph theory and designs. This book would also
work well for a one-semester course that does some counting and graph theory, or some
counting and design theory, or whatever combination one chooses. A brief commentary
on each of the chapters and their interrelation follows.

Chapter 1 is an introductory chapter; I usually select just one or two topics from
it and spend at most two classes on this chapter. Chapter 2, on permutations and
combinations, should be covered in its entirety. Chapter 3, on the pigeonhole principle,
should be discussed at least in abbreviated form. But note that no use is made later of
some of the more difficult applications of the pigeonhole principle and of the section on
Ramsey’s theorem. Chapters 4 to 8 are primarily concerned with counting techniques
and properties of some of the resulting counting sequences. They should be covered in
sequence. Chapter 4 is about schemes for generating permutations and combinations
and includes an introduction to partial orders and equivalence relations in Section 4.5.
I think one should at least discuss equivalence relations, since they are so ubiquitous
in mathematics. Except for the section on partially ordered sets (Section 5.7) in
Chapter 5, chapters beyond Chapter 4 are essentially independent of Chapter 4, and
so this chapter can either be omitted or abbreviated. And one can decide not to cover
partially ordered sets at all. I have split up the material on partially ordered sets into
two sections (Sections 4.5 and 5.7) in order to give students a little time to absorb
some of the concepts. Chapter 5 is on properties of the binomial coefficients, and
Chapter 6 covers the inclusion—exclusion principle. The section on Md&bius inversion,
generalizing the inclusion—exclusion principle, is not used in later sections. Chapter 7
is a long chapter on generating functions and solutions of recurrence relations. Chapter
8 is concerned mainly with the Catalan numbers, the Stirling numbers of the first and
second kind, partition numbers and the large and small Schréder numbers. One could
stop at the end of any section of this chapter. The chapters that follow Chapter 8 are
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independent of it. Chapter 9 is about systems of distinct representatives (so-called
marriage problems). Chapters 12 and 13 make some use of Chapter 9, as does the
section on Latin squares in Chapter 10. Chapter 10 concerns some aspects of the
vast theory of combinatorial designs and is independent of the remainder of the book.
Chapters 11 and 12 contain an extensive discussion of graphs, with some emphasis on
graph algorithms. Chapter 13 is concerned with digraphs and network flows. Chapter
14 deals with counting in the presence of the action of a permutation group and does
make use of many of the earlier counting ideas. Except for the last example, it is
independent of the chapters on graph theory and designs.

When I teach a one-semester course out of this book, I like to conclude with
Burnside’s theorem, and several applications of it, in Chapter 14. This result enables
one to solve many counting problems that can’t be touched with the techniques of
earlier chapters. Usually, I don’t get to Pdlya’s theorem.

Following Chapter 14, I give solutions and hints for some of the 700 exercises in
the book. A few of the exercises have a * symbol beside them, indicating that they
are quite challenging. The end of a proof and the end of an example are indicated by
writing the symbol O.

It is difficult to assess the prerequisites for this book. As with all books intended
as textbooks, having highly motivated and interested students helps, as does the en-
thusiasm of the instructor. Perhaps the prerequisites can be best described as the
mathematical maturity achieved by the successful completion of the calculus sequence
and an elementary course on linear algebra. Use of calculus is minimal, and the refer-
ences to linear algebra are few and should not cause any problem to those not familiar
with it.

It is especially gratifying to me that, after more than 30 years since the first edition
of Introductory Combinatorics was published, it continues to be well received by many
people in the professional mathematical community.

I am very grateful to many individuals who have given me comments on previous
editions and for this edition, including the discovery of typos. These individuals in-
clude, in no particular order: Russ Rowlett, James Sellers, Michael Buchner, Leroy
F. Meyers, Tom Zaslavsky, Nils Andersen, James Propp, Louis Deaett, Joel Brawley.
Walter Morris, John B. Little, Manley Perkel, Cristina Ballantine, Zixia Song, Luke
Piefer, Stephen Hartke, Evan VanderZee, Travis McBride, Ben Brookins, Doug Shaw,
Graham Denham, Sharad Chandarana, William McGovern, and Alexander Zakharin.
Those who were asked by the publisher to review the fourth edition in preparation for
this fifth edition include Christopher P. Grant who made many excellent comments.
Chris Jeuell sent me many comments on the nearly completed fifth edition and saved
me from additional typos. Mitch Keller was an excellent accuracy checker. Typos, but
1 hope no mistakes, probably remain and they are my responsibility. I am grateful to
everyone who brings them to my attention. Yvonne Nagel was extremely helpful in
solving a difficult problem with fonts that was beyond my expertise.
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It has been a pleasure to work with the editorial staff at Prentice Hall, namely,
Bill Hoffman, Caroline Celano, and especially Raegan Heerema, in bringing this fifth
edition to completion. Pat Daly was a wonderful copyeditor.

The book, I hope, continues to reflect my love of the subject of combinatorics, my
enthusiasm for teaching it, and the way I teach it.

Finally, I want to thank again my dear wife, Mona, who continues to bring such
happiness, spirit, and adventure into my life.

Richard A. Brualdi
Madison, Wisconsin
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Chapter 1

What Is Combinatorics?

It would be surprising indeed if a reader of this book had never solved a combinatorial
problem. Have you ever counted the number of games n teams would play if each team
played every other team exactly once? Have you ever attempted to trace through a
network without removing your pencil from the paper and without tracing any part of
the network more than once? Have you ever counted the number of poker hands that
are full houses in order to determine the odds against a full house? More recently,
have you ever solved a Sudoku puzzle? These are all combinatorial problems. As
these examples might suggest, combinatorics has its roots in mathematical recreations
and games. Many problems that were studied in the past, either for amusement or
for their aesthetic appeal, are today of great importance in pure and applied science.
Today, combinatorics is an important branch of mathematics. One of the reasons for
the tremendous growth of combinatorics has been the major impact that computers
have had and continue to have in our society. Because of their increasing speed,
computers have been able to solve large-scale problems that previously would not
have been possible. But computers do not function independently. They need to
be programmed to perform. The bases for these programs often are combinatorial
algorithms for the solutions of problems. Analysis of these algorithms for efficiency
with regard to running time and storage requirements demands more combinatorial
thinking.

Another reason for the continued growth of combinatorics is its applicability to
disciplines that previously had little serious contact with mathematics. Thus, we
find that the ideas and techniques of combinatorics are being used not only in the
traditional area of mathematical application, namely the physical sciences, but also in
the social sciences, the biological sciences, information theory, and so on. In addition,
combinatorics and combinatorial thinking have become more and more important in
many mathematical disciplines.

Combinatorics is concerned with arrangements of the objects of a set into patterns
satisfying specified rules. Two general types of problems occur repeatedly:
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e Eristence of the arrangement. If one wants to arrange the objects of a set so
that certain conditions are fulfilled, it may not be at all obvious whether such an
arrangement is possible. This is the most basic of questions. If the arrangement
is not always possible, it is then appropriate to ask under what conditions, both
necessary and sufficient, the desired arrangement can be achieved.

e Enumeration or classification of the arrangements. If a specified arrangement is
possible, there may be several ways of achieving it. If so, one may want to count
or to classify them into types.

If the number of arrangements for a particular problem is small, the arrangements
can be listed. It is important to understand the distinction between listing all the
arrangements and determining their number. Once the arrangements are listed, they
can be counted by setting up a one-to-one correspondence between them and the set
of integers {1,2,3,...,n} for some n. This is the way we count: one, two, three, ... .
However, we shall be concerned primarily with techniques for determining the number
of arrangements of a particular type without first listing them. Of course the number
of arrangements may be so large as to preclude listing them all.

Two other combinatorial problems often occur.

o Study of a known arrangement. After one has done the (possibly difficult) work of
constructing an arrangement satisfying certain specified conditions, its properties
and structure can then be investigated.

o Construction of an optimal arrangement. If more than one arrangement is pos-
sible, one may want to determine an arrangement that satisfies some optimality
criterion—that is, to find a “best” or “optimal” arrangement in some prescribed
sense.

Thus, a general description of combinatorics might be that combinatorics is con-
cerned with the existence, enumeration, analysis, and optimization of discrete struc-
tures. In this book, discrete generally means “finite,” although some discrete structures
are infinite.

One of the principal tools of combinatorics for verifying discoveries is mathematical
induction. Induction is a powerful procedure, and it is especially so in combinatorics.
It is often easier to prove a stronger result than a weaker result with mathematical
induction. Although it is necessary to verify more in the inductive step, the inductive
hypothesis is stronger. Part of the art of mathematical induction is to find the right
balance of hypotheses and conclusions to carry out the induction. We assume that the
reader is familiar with induction; he or she will become more so as a result of working
through this book.

The solutions of combinatorial problems can often be obtained using ad hoc ar-
guments, possibly coupled with use of general theory. One cannot always fall back



