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PREFACE

A representative sampling of undergraduate computer science courses would
include the following (with varying titles): (1) introduction to computing, most
often via Fortran, Basic, or PL/1; (2) assembly language programming; (3) data
structures; (4) discrete structures; (5) machine organization; (6) numerical
methods; (7) programming languages survey; (8) business data processing; (9)
applications programming; and (10) systems programming. Through this book,
we are proposing a course on the design and analysis of algorithms.

A first course in computing typically focuses on such topics as the workings of
a computer, keypunching and data preparation, the syntax of a programming
language, coding, input/output, the elementary aspects and uses of data
structures, subroutine and function concepts, the art of debugging, the design of
relatively simple programs, some machine-language concepts, and a few
applications programs. There are a number of additional topics on programming
which are neither covered in a first course in computing nor covered in much detail
in any other undergraduate computer science course. These topics include:

1 The complete development, from start to finish, of a reasonably
complicated problem for computer solution

2 Algorithm design techniques, such as subgoals, hill climbing, working
backward, backtracking, branch and bound, recursion, and heuristics

3 Efficient and correct implementation of stated algorithms

4 Algorithm and program correctness (a matter that all too frequently
encourages the question: Does the output look all right?)

5 Measures of algorithm efficiency, complexity, and overall effectiveness

6 Program testing, including tests for correctness, complexity, and general
program behavior

7 More sophisticated mathematical thinking (involving probability, for
example) required in designing and analyzing programs of reasonable
complexity

This text is concerned with all the above-mentioned aspects of computing.

vii



viii PREFACE

Although a course in the design and analysis of algorithms necessarily
involves a significant amount of programming, it is not meant to serve simply as a
second (or third) programming course. Consequently, a number of topics which
might relate to the design and analysis of algorithms are not discussed in this text;
these topics include matters of I/0, debugging techniques, optimizing compilers,
and use of library routines. This text is intended to serve as a bridge between the
more practical, programming-oriented courses and the more theoretical,
mathematically oriented courses in computer science. The algorithms presented
have a distinct mathematical flavor because of this orientation and the instructive
nature of their design and analysis.

The figure on page ix shows how a course on the design and analysis of
algorithms can fit into a typical undergraduate computer science curriculum. To
some extent, we see this course as a substitute for the introduction to discrete
structures, the course listed in the ACM Curriculum 68 (Comm. ACM, Mar.
1968). Although our subject matter has a healthy mathematical content, the level
is lower, less theoretical, and less formal than that of an introduction to discrete
structures; and the applications to computer science are more apparent.

The mathematical content in the design and analysis of algorithms comprises
introductory parts of the subjects of networks, combinatorics, probability, and
statistics. These topics are covered not for their own sake but rather for use in
algorithmic applications. To establish the correctness or properties of certain
algorithms, proofs are presented throughout the book, many of which use
mathematical induction. We do not attempt to teach the student how to prove the
theorems, but we do expect that he or she will be able to follow their logic.

We also believe that the subject matter in this text plays a central role in
computer science. In addition to serving as the first theoretical course in a
computer science curriculum, the subject relates well to courses in data
structures, programming languages, applications programming, and numerical
analysis.

In principle, a student whose background includes one semester of calculus, a
first computer programming course, and a high-school-level knowledge of
permutations, combinations, and sets should be adequately prepared to read this
book. Calculus is used infrequently, but it is regarded as a prerequisite to ensure
some mathematical maturity. We have found that the material is slightly difficult
for most sophomores and appears to be most appropriate for the junior or senior
level.

Since implementation and testing of programs are an important part of the
development of algorithms, computer code has to be exhibited. Although some
computer scientists may not agree with our choice, we have decided to exhibit all
programs in Fortran for the simple reason that it is the only programming language
that is close to being universally known. There does not appear to be an
alternative that neither forces additional prerequisites nor makes the book so long
as to dilute the material of primary interest. For those readers who are familiar
with more structured programming languages, we have included an appendix
containing Algol or PL/1 equivalents of most of the programs in the text.
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x PREFACE

Our format for the presentation of algorithms is a cross between the heavily
annotated, step-by-step style popularized by Knuth in the first three volumes of The
Art of Computer Programming and the Algol-like format that is currently popular in
the literature. Constructs such as do-while and if-then-else are used regularly
and implemented in obvious ways. A reasonable effort has been made to adhere
to the principles of structured programming. Appendix A summarizes the
conventions used to state algorithms in this text.

Chapter 1 is primarily a qualitative introduction to the notions of an algorithm
and the basic steps that go into its complete development. Unfortunately,
considerations of space do not permit us to develop most of the algorithms in this
text in this much detail. In later chapters, some of the development steps have
been left as exercises.

Chapter 2 develops several tools that are useful in the design and analysis of
algorithms. Elementary concepts of structured programming, networks, data
structures, probability, and statistics are considered. For supplementation, an
appendix—on sets and elementary proof techniques—is provided at the end of
the book. An effort has been made to retain an “algorithmic flavor” throughout
this chapter and the appendices and, whenever possible, new algorithms are
introduced to illustrate concepts.

A statement should be made about the elementary aspects of probability and
statistics covered in Chap. 2. Many interesting and important problems in the
design and analysis of algorithms are probabilistic in nature; for example, a strong
argument can be made that the most useful measure of the quality of an algorithm
is its average or expected performance. On the other hand, we recognize that
many students have difficulty with the study of probability and statistics. With this
in mind, we have written this text so that an instructor may omit probabilistic
material without much trouble.

A number of useful algorithm design techniques are studied in Chap. 3, in
which each section includes at least one new problem and/or algorithm. An
algorithm for finding a minimum-weight spanning tree is completely developed in
Chap. 4, and it is used to illustrate some simple program-testing procedures.

Chapters 5 and 6 contain a variety of examples and applications, most of which
reinforce ideas introduced in the first four chapters. Instructors can select topics
from these chapters on the basis of class interest, available time, mathematical
level, and so forth. Chapter 7 is designed as a reference tool for the reader.

Almost 300 exercises have been included in this text. They vary widely in
difficulty; many are open-ended and experimental. The exercises are an
important part of the book, and it is hoped that instructors will find time to discuss
some of the more interesting and difficult problems in class. Note that the more
asterisks (*) preceding an exercise, the greater its difficulty. An exercise with an
“L" label will require considerable time. Some of the exercises are ‘titled” to
indicate the coverage of certain subject matter or concepts. Instructors might
consider using groups of two or three students for some of the longer and more
difficult assignments, particularly those that require extensive program testing.

It is difficult to acknowledge everyone who has contributed time and effort to
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this book. Many people have read it and offered their comments, constructive
criticism, and encouragement; unfortunately, it is not possible to recognize them
all individually. Above all, we thank Diane Goodman, our typist and chief de-
bugger. Dana Richards contributed more than half of Sec. 6.1, and Bruce
Chartres is responsible for the ecological model in Sec. 3.6. Others who have
made major contributions to the manuscript include Linwood Ferguson, Richard
Armentrout, and Clay Pendergrast. Thanks are also due to Art Fleck, Harold
Stone, Ken Bowman, Wayne Madison, and an anonymous reader for their useful
comments. Mouton Publishers kindly gave us permission to use about 12
figures and several pages of text in Sec. 2.2. Diane Spresser, Sandee Mitchell,
and Jennifer Ward helped with the exercises and the proofreading of the manus-
cript. George Eade and Louis Rowley wrote the Algol and PL/1 programs in
Appendix C. Last, but not least, we would like to thank the students in our
course in the design and analysis of algorithms, who have been such willing
guinea pigs for the last three years.

No book of this sort can ever be completely free of “‘bugs.” In spite of the
efforts of many people, there undoubtedly remain errors in the text. We would
appreciate having these brought to our attention by our readers.

S. E. Goodman
S. T. Hedetniemi
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THE COMPLETE DEVELOPMENT
1 OF AN ALGORITHM

1.1 INTRODUCTION

It is only fair to start by telling you what we hope to accomplish. Throughout your
academic and professional careers people will present you with problems, and you
will be expected to use your background in mathematics and computer science to
solve them. This will often entail the development of an algorithm. Our purpose
in this text is to help you learn how to (1) get started on a problem, (2) design an
algorithm that works, (3) implement the algorithm as a computer program, and (4)
judge the effectiveness of an algorithm.

This is easier said than done. The world of computing is littered with the
remains of computer programs which were once considered to be finished
products, but which later were found to be incorrect, inefficient, unintelligible, or
worthless for some other reason. Perhaps the simplest explanation for this is that
the computer is a relatively new and complex tool and it takes time to learn how to
use it well. The skills necessary to use a computer as a powerful instrument for
solving problems, particularly mathematical problems, are not easy to acquire.

The objective of this chapter is to make a *‘first pass’ at the concept of the
complete development of an algorithm, the basic steps of which are:

Statement of the problem

Development of a model

Design of the algorithm

Correctness of the algorithm
Implementation

Analysis and complexity of the algorithm
Program testing

Documentation

O NOGHEWN =

The remainder of the book is devoted to the detailed study and illustration of these
fundamental steps. For the time being we shall limit ourselves to brief discus-
sions of algorithms (Sec. 1.2) and the steps leading to their complete development
(Sec. 1.3).
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1.2 ALGORITHMS

Everyone who has solved problems with the aid of a digital computer has some
intuitive idea of the meaning of the word “‘algorithm.” One might even go so far
as to argue that it is one of the most central concepts in computer science. The
“official’’ definition from the most recent (1971) edition of the Oxford English
Dictionary states that the word “algorithm” is an “erroneous refashioning of
algorism’’; in turn, algorism is considered to be more or less synonymous with
algebra and arithmetic, and this definition dates back to the ninth
century. Apparently the modern usage of the word is still strictly limited to the
computer science community.

Let us first try to verbalize our intuitive ideas. We can loosely define an
algorithm as an unambiguous procedure for solving a problem. A procedure is a
finite sequence of well-defined steps or operations, each of which requires only a
finite amount of memory or working storage and takes a finite amount of time to
complete. We append the requirement that an algorithm must terminate in finite
time for any input.

One difficulty with this definition is that the term ‘“‘unambiguous’ is very
ambiguous. ‘“‘Unambiguous’”’towhom? Ortowhat? Since nothingisuniversal-
ly clear or vague, the executor of the algorithm must be, at least implicitly,
specified. An algorithm for computing the derivative of a cubic polynomial might
be perfectly clear to someone who is familiar with calculus, but it may be totally
incomprehensible to someone who is not. Thus, the executor’s computational
capabilities must also be specified.

There are other definitional problems. An algorithm may clearly exist for
some task, but it may be difficult or impossible to describe in some given
format. The human race has clearly developed efficient algorithms for tying
shoelaces. Many children can tie their own shoes by the age of five. Butitis very
difficult (try it) to give a purely verbal—no pictures or demonstrations
allowed—statement of such an algorithm.

This definition obviously has some defects. It is possible to avoid most of
these defects by defining ‘‘mathematical machines” with very carefully specified
capabilities. We then say that an algorithm is any procedure which can be
executed by such a machine. Such attempts at defining an algorithm are very
deep and difficult mathematically; they are also much too rigid for our purposes.

We would like to retain some of the flexibility and intuitive appeal of the first
definition, and yet at least partially remove some of its ambiguities. This is easily
done by specifying a “‘typical” modern digital computer and a language of
communication with such a computer, and then licensing a procedure as an
algorithm if it can be implemented on this machine using the given language.

This computer will have an unlimited random-access memory in which real
numbers, integers, and logical constants can be stored. In one word of this
memory we can store a number of arbitrary, but finite, size and can access any
word in a fixed, constant amount of time (this may be a bit unrealistic, but it is
almost true in practice and is a convenient assumption). This computer is
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capable of executing a stored program that consists of a reasonable collection of
instructions of a basic type, including all standard arithmetic operations, com-
parisons, branchings, etc. We will usually assign one unit of execution time to
each such instruction. Some of our memory can be organized into one-, two-, and
three-dimensional arrays (matrices) by simple declarations. When we want to be
specific, we will use the Fortran language as a model for the capabilities of our
machine.’

We have effectively said that we only have an algorithm for solving a problem
when we can write a computer program that solves it. This is a debatable
issue. Programs on the kind of computer described in the previous paragraph
cannot tie shoes. The well-defined steps do not include those necessary to
successfully tie shoes. A good argument can be made that we are really dealing
with a restricted concept of an algorithm. The human machine is capable of
executing a large variety of subtle steps that are beyond the range of our typical
computer. However, the restricted definition is just what we want for this book.

The following example of an algorithm illustrates a level of detail that is
consistent with our definition. Appendix A contains a detailed discussion of the
conventions used to state algorithms in this text.

Consider the simple problem of finding the maximum number in a list of N real
numbers R(1), R(2), ..., R(N). The basic idea of the algorithm is to go through the
entire list, one number at a time, and remember the largest number that we have
seen so far. By the time the entire list is inspected, the largest number will have
been retained. You might try to draw a flowchart for this algorithm before reading
further.

The notation A < B denotes an assignment statement; that is, set variable A
equal to the current value of B.

Algorithm MAX Given N real numbers in a one-dimensional array R(1),
R(2),...,R(N), find M and J such that

M=R(J) = max R(K)

In the case where two or more elements of R have the largest value, the value

of J retained will be the smallest possible.

Step 0. [Initialize] Set M < R(1); and J < 1.

Step 1. [N=1?] If N=1 then STOP fi.f

Step 2. [Inspect each number] For K< 2 to N do step 3 od; and STOP.

Step 3. [Compare] If M <R(K) then set M < R(K); and J < K fi.t (M is

now the largest number we have inspected, and it is in the Kth
position of the array.)

'Many of the algorithms in this book have also been coded in Algol or PL/1. See
Appendix C.

tThe fi and od in this algorithm are used to denote the end of the if and do constructs,
respectively. This will be discussed in more detail in Sec. 2.1.
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Algorithm MAX is not in coded form. It is in a form that is generally easier to
follow than computer code, but it is expressed in terms of steps which are available
in every common computer language. The conversion to coded form is
easy. However, this is not always the case. Some algorithms are too compli-
cated for us to make the transition from the preceding verbal form to computer
code in one step. At least one intermediate stage of development may have to be
introduced.

1.3 THE BASIC STEPS IN THE COMPLETE DEVELOPMENT
OF AN ALGORITHM

We will now briefly consider each of the basic steps listed near the end of Sec. 1.1.
Our primary interest is to establish the function of each step and to gain some
perspective on how these steps combine to form a coherent whole.

Statement of the Problem

Before we can understand a problem, we must be able to give it a precise
statement. This condition is not, in itself, sufficient for understanding a problem,
but it is absolutely necessary.

Developing a precise problem statement is usually a matter of asking the right
questions. Some good questions to ask upon encountering a crudely formulated
problem are:

Do | understand the vocabulary used in the raw formulation?

What information has been given?

What do | want to find out?

How would | recognize a solution?

What information is missing, and will any of this information be of use?
Is any of the given information worthless?

What assumptions have been made?

Other questions are possible, depending on the particular problem. Often ques-
tions such as these need to be asked again, after some of them have been given
answers or partial answers.

Example Jack is a computer marketing representative (salesman) whose
territory covers 20 cities scattered throughout Texas. He works for large
commissions, but his company will reimburse him for only 50 percent of the
actual cost of automobile travel for his business trips. Jack has taken the
trouble to figure out how much it would cost him to travel by car between every
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pair of cities in his territory. He would clearly like to keep his travel costs
down.

What is given? The primary information is a list of the cities in Jack'’s
territory and the associated cost matrix, that is, a square array with entry c;
equal to the cost of going from city i to city j. In this case the cost matrix has
20 rows and 20 columns.

What do we want to find out? We want to help Jack keep his travel costs
down. That is a bit vague. It really looks inadequate when we ask: How
would we recognize a solution? After giving the matter some thought, we
should conclude that we cannot do any better without additional information
from Jack. Does Jack have more customers in some cities than in others? If
he does, or if he has some special customers, Jack might want to visit certain
cities more often. There may be other cities that Jack would not bother to
visit unless he happened to find himself in a nearby city. In other words, we
must know more about Jack’s priorities and schedule preferences.

Therefore, we go back to Jack and ask him for additional information. He
tells us that he would like an itinerary that would start at his base city, take him
to each of the other cities in his territory exactly once, and return him to his
base. Consequently, we would like a list of cities which contains each city
exactly once, except for the base city which is listed first and last. The order
of the cities on this list represents the order in which Jack should make the
tour of his territory. The sum of the costs between every consecutive pair of
cities on the list is the total cost of the tour represented by the list. We could
solve Jack’s problem if we could give him the list with the smallest possible
total cost.

This is a good basic statement of the problem. We know what we have and
what we want to find.

Development of a Model

Once a problem has been clearly stated, it is time to formulate it as a
mathematical model. This is a very important step in the overall solution process
and it should be given considerable thought. The choice of a model has
substantial influence on the remainder of the solution process.

As you might imagine, it is impossible to provide a set of rules which auto-
mates the modeling stage. Most problems must be given individual attention.
However, there are some useful guidelines. This topic is more of an art than a
science and is likely to remain that way. The best way to become proficient is by
acquiring the experience that comes from the study of successful models.

There are at least two basic questions to be asked in setting up a model:

1 Which mathematical structures seem best-suited for the problem?
2 Are there other problems that have been solved which resemble this one?



