- Understanding

Microprocessors

MI[:R[IPHI:[&SI]H

SERVICES

ouu. LOCK .

o Minimum QOrder Charge M nimum Lin
|t em Ch rge on Stock Items Full Te h ISp f atio vailable
(R ng Oldham)
061-6520431
01-253 7521/8162

JTION » ITION - 669971 4




- Authors acknowledgement

The authors wish to thank T. Jeffrey Burton Associates for their help in
preparing this book.

UNWIN BROTHERS LIMITED
OLD WOKING SURREY



Understanding
Microprocessors

By The Staff of Motorola Inc., Semiconductor Products Division

General Editor:
DANIEL QUEYSSAC

Based on the series ‘“Understanding Microprocessors” published by
Electronics Weekly



- Authors acknowledgement

-
The authors wish to thank T. Jeffrey Burton Associates for their help in
preparing this book.

UNWIN BROTHERS LIMITED
OLD WOKING SURREY

R AT M s il



CONTENTS

Chapter 1

<R - T R T ¥ SR R

o R o Y S e S i S R O G G o s (R S R g
LS SR e R - - DT (R - SO T SR S TR T

What is a microprocessor ?

Binary number systems (Part‘s 152 & 3) .

Basic microprocessor system concepts
Microprocessor hardware
Random access memory

Read only memory
Input/output techniques

Data transfer by DMA .

The interface

Discussion of interrupts
Solving an I/O problem
Interfacing a keyboard .
Microprocessor programming.
Program execution

Software support tools .
Support programs

MPU programming languages
Programming techniques
Should you use an MPU ?
Selecting your MPU

System design process

System design considerations .
Memory technologies

MPU market review

Glossary of terms

PAGE

15
18
2
25
27
29
2
3
38
49
54
59
69
72
75
81
84
87
93
99

102

105

111






CHAPTER 1

What is a microprocessor ?

THE MICROPROCESSOR is perhaps the most important development the electronics
industry has seen for at least the last decade. It was introduced to meet the need for a
universal large scale integrated circuit caused by the fairly high cost and narrow applica-
tion of most specialist LSI circuits.

Semiconductor manufacturers have learned how to incorporate thousands of
transistors on a single chip of silicon. Unfortunately, before the microprocessor, as
the number of transistors on a chip increased, the more dedicated that chip became
to a particular application and the smaller the potential market became for it.

Since the cost of an integrated circuit is related inversely to the production volume,
LSI circuits for other than common applications tended to be more expensive than
necessary because of the restricted market.

VARIETY OF FUNCTIONS

The microprocessor, with its ability to perform a wide variety of different functions,
is the answer. It can be obtained at low cost, because its almost unlimited range of
applications makes volume production economical.

In use, the microprocessor can be coupled, via suitable interface circuits, to a wide
variety of external devices which both provide its input signals and are controlled by
its outputs.

The microprocessor, at the centre of this activity, responds to inputs and produces
outputs in a manner determined wholly by a sequence of instructions which are stored
in some form of memory connected to the microprocessor. This sequence of instructions
is referred to as its program.

Immediately one is introduced to microprocessing concepts, parallels with mini-
computers are inevitably drawn. Is the microprocessor on a par with the minicomputer ?
What are the basic differences ? The answer to these questions can be fairly complex.

However, it is generally true to say that the MOS microprocessors on the market
today operate in a similar way to minicomputers, but are slower and not as powerful
in that the instruction sets are less comprehensive. The differences are, however,
quickly diminishing.

HARD-WIRED LOGIC

In general terms, the microprocessor is a replacement for hard-wired logic in most
applications where hard-wired logic is still used and in applications where more
complex logic could have been used to advantage if the cost had not been prohibitive.

The main advantages offered by microprocessing systems are lower cost, fewer
components, increased reliability and versatility. Existing systems can be modified at
will by changing the program of instructions, often merely by exchanging a ROM
device. However, do not be misled, program development is time consuming, and
changes may not always be as simple as they sound.

Designing with a microprocessor involves exchanging logic arrays for software and
there is an optimum balance between the two which provides the best performance in
a given system most cost effectively. The systems designer using microprocessors requires
both logic design and software expertise.



Fortunately, the qualities required of a good programmer are basically similar to

those possessed by logic designers

Logic arrays
PRy,
e
Software

The optimum balance—between software and hardware.

5
=
x
w
-l
a
4
(o]
O
=
z
8 Discrete Small scale Medium scale Large scale Microprocessors
o3 components integration integration integration
o) and. (ssI) (Ms1) (Ls1)
O hard-wired
logic
1955 TIME —» 1975

The development of semiconductor technology from discrete components and hard-wired
logic to microprocessors. The MPU represents a breakthrough in versatility at a decreasing
cost per unit.



CHAPTER 2

Binary number systems

PART 1

THE MICROPROCESSOR breaks down the conventional divisions between software
and hardware—the new definition is firmware—and presents the electronics engineer with the
unfamiliar task of programming.

Programming forms a very important part in the development of a microprocessor
based system, and it is essential that engineers intending to use a microprocessor are
fully conversant with binary and related number systems.

EIGHT-BIT WORDS

The majority of microprocessing systems available today are based on a binary word
that is eight bits long. In this series of articles we will use the eight-bit word (or byte,
as it is called) as the norm; however, most of what is written also applies in principle
to four and 16-bit machines.

To the microprocessor, a byte is merely a set of eight electrical signals, or logic levels.
Each signal can have one or two values, or states.

The machine itself does not know whether these electrical states represent a binary,
or any other kind of number.

The designer of the internal logic of the microprocessor has given particular bit
patterns significance by the way he has organised the logic.

In his turn, the programmer can make the bytes represent anything he likes by the
way in which he writes his program. For example, a byte, or pattern of eight bits,
could represent:

1. A binary pattern between 00000000 and 11111111

. A number between 0 and 255;¢ in natural binary code

A number between —128 and +127 in binary 2’s complement
. A number between +127 and —127 (signed binary)

A number between 00 and 99 (binary coded decimal)

. An octal number between 000 and 377

A hexadecimal number between 00 and FF

A ée;ter of the alphabet, the numerals 0 to 9 or punctuation marks (ASCII
code

9. Half a 16-bit memory address

10. An instruction

11. Whatever else the programmer wants it to represent

PNOAL A W N

_ As far as the binary representation of numerical values is concerned, in microprocess-
ing the programmer has a choice of natural binary, signed binary, 2’s complement
binary, and binary coded decimal.

Hexadecimal and octal can be described as shorthand methods of writing binary
numbers or patterns. Each of the four main binary numerical systems mentioned
above can be described by means of a series of short statements.

A word is a set of binary digits which are operated on collectively and which form
one number.



A byte is a binary word and comprises eight binary digits, for example, 10101010 is
a byte.

The left-hand bit, the most significant, is referred to as bit 7 (b7).
The right-hand bit, the least significant, is referred to as bit 0 (bg).

Intermediate bits are numbered between bit 1 to bit 6 (by to bg) from right to left.
In natural binary a number is always positive.

A natural binary word can have a numerical value of 22 — 1, where n is the number
of bits, for example:

111 =23 — 1 =17y
11111111 =23—1=2 510

where 7,9 and 255 signify decimal numbers.
Therefore a byte (8-bits) can have any value between zero and 255;¢ in natural
binary.

Counting can be described as repeatedly adding one unit. In natural binary counting
proceeds as follows:

(@) 000 (b) 001 GRS (d) ol Gete
00171 0017
001 010 011
CARRY— 1

Explanation:
@1+0=1,0+4+0=0,0+0=0 Result 001
(b)1+1=0carry 1,
0+0+1carry=1,0+0=0 Result 010
©14+0=1,04+1=1,04+0=0 Result 011

d1+4+1=0carryl,
0+ 1+ 1carry =0 carry 1,
040+ 1carry =1 Result 100

As in decimal addition, when the sum of two digits exceeds the capacity of a digit
position, a one is carried to the next most significant position to be included in the
next addition. In the following example, as:

810 + 510 = 310 carry 1y
then 12 + 1, = 0, carry 1,

where 1, indicates a binary number

PART 2

WE CONTINUE by considering the basic arithmetic operations of addition and sub-
traction which are used to describe logic functions.

The rules of binary addition are illustrated in the first truth table (Table 1). All the
possible combinations of input states are listed and the true output states for each
combination are given.

8



TABLE 1
Rules of binary addition

Truth table for a single bit of a binary adder

Carry Carry
X + Y INt = Z ouUT?2
0 - 0 0 = 0 0
1 “+ 0 0 = 1 0
0 -+ 1 0 — 1 0
1 L 1 0 = 0 1
0 + 0 1 = 1 0
1 i 0 1 = 0 1
0 4 il 1 = 0 1
1 T 1 1 = 1 1

1 This is the carry (IN) from the previous column.
2 This is the carry (OUT) to the next more significant column.

X and Y are input states and Z is the output state.
The rules of binary addition are applied to the addition of two bytes below:

00101101
10110110 +
11100011
Carry— 1111
In binary subtraction, as in decimal subtraction, if it is necessary to subtract a larger

number from a smaller one in a particular column, then a digit has to be “borrowed”’
from the next more significant column, for example:

Decimal Binary
2 10101
14 01110
07 00111
Borrow— 1 111

. The rules of binary subtraction appear in the second truth table (Table 2). It is
interesting to note that the result columns (Z) are identical for both subtraction and
addition, although the “carry” and “borrow’ bits generated are not identical.



TABLE 2

Truth table for a single bit of a binary subtractor

Borrow Borrow
X — Y INt = Z OuUT?
0 — 0 0 = 0 0
1 — 0 0 — 1 0
0 - 1 0 = 1 1
1 — 1 0 — 0 0
0 — 0 1 = 1 1
1 — 0 1 = 0 0
0 — ] 1 = 0 1
1 — 1 1 = 1 1

1 This is the borrow from the previous subtraction column
2 This is the borrow from the next more significant column

So far this discussion has concentrated on positive binary numbers, but there are
two commonly used binary notations that can be used to represent both positive and
negative numbers. These are called 1’s complement binary and 2’s complement binary.
Both systems use the left bit (b7) of a word to indicate the sign of the number and the
remaining bits to give the magnitude.

By convention, if the left-most bit is 0, the number is positive; if it is one, the number
is negative. In 1’s complement representation, changing the sign:bit from 0 to 1 negates
the whole number and its magnitude does not change:

01101001 = 4105
11101001 = —105
01111111 = +127
11111111 = —127

1’s complement binary is hardly ever used by computer hardware because it requires
relatively complex logic. Certain anomalies arise using 1’s complementary binary,
for example

00000000 = zero
but 10000000 = —zero
This gives rise to a confusing situation.
Consider the following:
00000000 = 0

subtract 1 from zero
giving 11111111 = —1

"ll"zhse 8-bit positive limit is 01111111 = -+ 1279 and the negative limit is 10000000 =
—12810.

This is 2’s complement representation. Counting, by repeatedly adding 1 to —128
(10000000) will give a correct result all the way through zero to +127 (01111111). The
sign bit will automatically change as the result goes through zero. Equally, continuously
subtracting 1 from -+127 will give the correct result down to —128:

01111111 = 4127
01111110 = 4126

10



00000001 = -1
00000000 = 0
1= =1
I
10000000 = —128

In 2’s complement representation the positive and negative limits to the magnitude
of a given number of bits can he expressed as follows:

Positive limit is (271 — 1)
Negative limit is —(27-1)
where n is the number of bits.

It is very easy to change a positive number to its negative equivalent in 2’s comple-
ment.

(1) Invert all bits (i.e. generate 1’s complement)
(2) Add 1

00100101 = 37

Invert 11011010
Add 1

11011011 = —37

Another method is to take each bit in turn starting from the right. Write down each
bit as it stands, up to and including the first “one” to be encountered, then invert all
subsequent bits:

o 0 0 1
] 130 O l '

I |
INVERT COPY

The rules governing the arithmetic manipulation of 2’s complement numbers are
identical with those for unsigned (positive) binary numbersin which it is assumed that
the most significant bit is “0”.

Since the most significant bit is implied, the permitted magnitude can range up to
25510 from zero. The design of the arithmetic logic unit is therefore much simplified.

1210:40
100‘

PART 3

CALCULATIONS performed very simply by computers and microcomputers would
present a tedious task to the engineer. The coding of numbers into binary, and the subse-
quent operation of the binary-coded numbers involves a great deal of tiresome arithmetic.

To counteract this problem, and to save effort, other binary-based numerical scales
are very commonly used. These are the “octal” and the “hexadecimal” systems, with
the “binary-coded decimal’ notation as a compromise solution.

Instead of writing eight binary digits to represent the numbers operated on by the
processor, it is possible to write three octal characters or two hexadecimal ones. Octal,
as it suggests, is a number system with a base number 8, hexadecimal has a base of 16.
Both systems save time and reduce errors which might otherwise be caused by a
confusion of ones and noughts.

11



The table below illustrates how useful hexadecimal notation can be as a shorthand
method of writing binary numbers.

Binary(z) Decimal(9p Hexadecimal(e)
0000 = 0 = 0
0001 = 1 = 1
0010 = 2 = 2
0011 = 3 = 3
0100 = 4 = 4
0101 = 5 = 5]
0110 = 6 = 6
0111 = 7 = 7]
1000 = 8 = 8
1001 = 9 = 9
1010 = 10 = A
1011 = 11 = B
1100 = 12 = C
1101 = 13 = D
1110 = 14 = E
1111 = 15 = F

One hexadecimal digit represents a four digit (bit) binary word. Two hexadecimal
digits represent a byte:

01101011, = 6Bys
11111111, = FF;6
Therefore:

01111111, = 7Fi6 = 4127
011111105 = 7E;6 = +1264¢

00000001 = Ol;6 = -Fl5o
00000000, = 006 = 0io
1111115 = FEip — 15,
11111110: = FBis = =24
10000000, = 80;6 = —128;0

where the binary numbers are in 2’s complement form. Counting in hexadecimal is
straightforward :

Decimal(;y Hexadecimal(6)

0 0

1 1

13 D

14 E

15 F

16 10

17 11

255 FF

12



Similarly, octal can be used as a shorthand version of binary coded numbers. A
single octal number represents a three-digit binary number. Counting in octal proceeds
as follows:

Binary() Decimal) Octal(g)
000 0 0
001 1 1
010 2 2
011 3 3
100 4 4
101 5 5
110 6 6
111 7 i

Therefore

01001001y = 111cg)
11111111¢) = 377

The microprocessor operates most efficiently with binary number systems. However,
there are many occasions when it is required to operate with decimal numbers. This
can be done using a notion called binary—coded decimal (BCD).

BCD is similar to hexadecimal, except the digits A to F are not used:

Hexa-

Binary(2) BCD decimal(;6) Decimaliy
0000 0000 0 0
0001 0001 1 1
0010 0010 2 2
0011 0011 3 3
0100 0100 - 4
0101 0101 S 5
0110 0110 6 6
0111 0111 7 7
1000 1000 8 8
1001 1001 9 9
1011 — A 10
1111 — F 15

With a single byte it is possible to express a two-digit decimal number within the
following limits:

00000000(BCD) 00¢10
10011001(BCD) 9910y

Since the maximum capacity of BCD bytes is 9910y less than half of the information-
Sa;rsr)ymg capacity of the byte is used (in natural binary, a byte can have a value up to

I

13



BCD is, however, very useful and many microprocessors offer facilities for handling
it. In fact, there is at least one microprocessor that deals exclusively with BCD numbers.

The size of the numbers which can be represented using the hexadecimal, octal and
binary-coded decimal numbering systems is, however, limited to 255 for each byte.
The resolution is also poor, equal to one part in 255 or approximately 0-39 per cent.

For greater accuracy, therefore, two or more bytes are used to represent numerical
quantities and a mathematical technique known as “multiple precision” is adopted.
A two-byte (16-bit) word has a resolution of more than one part in 6400.



CHAPTER 3

Basic microprocessor system
concepts

THE MAIN object here is to describe how a microprocessor might be used to
perform a particular task and to point out the similarities which exist between logic
design and programming.

Every microprocessor has a memory in which a sequence of instructions can be
stored. The memory, like a filing system, is divided into a series of locations and each
location stores one byte. To enable these bytes to be retrieved, each location is allo-
cated an address (like houses in a street) which does not change. Normally, in an
eight-bit microprocessing system, 16 address bits (lines) are provided thereby providing
coded access to (216 — 1) locations, i.e. 65,536.

Binary address Hexadecimal equivalent
00000000 00000000 0000
00000000 00000001 0001

00000000 00000010 0002

11111111 11111111 FEFF

The byte stored at a particular location, or address, may be an instruction (which
causes the microprocessor to perform a task) or it may be data (perhaps a numerical
value). The way in which the microprocessor uses a particular byte as an instruction or
data will be described in a later article. Suffice to say now that a sequence of instructions
is stored in the memory and can be retrieved by the microprocessor.

In traditional system design a block diagram can be drawn which shows the main
components of the system and the way in which they are interconnected. Very often,
in performing a particular task, many operations may be carried out simultaneously
(in parallel).

With the microprocessor-based system, the approach is different because it can only

perform one operation at a time. Therefore, the task to be undertaken must be
represented as a series of operations in sequence.
_ Often, however, some tasks are performed by autonomous sub-systems such as
input/output (I/O) controllers, while system co-ordination, control and the remaining
tasks are performed by the microprocessor. The amount of additional circuitry used
beyond the microprocessor sub-system is a matter for a trade-off between several
factors; speed, hardware and software costs being the most important.

15



