Methods in ENZYMOLOGY

Volume 452
Autophagy in Mammalian Systems,
Part B

Edited by
Daniel J. Klionsky

Q55 M592 V:452

VOLUME FOUR HUNDRED AND FIFTY-TWO

METHODS IN ENZYMOLOGY

Autophagy in Mammalian Systems, Part B

EDITED BY

DANIEL J. KLIONSKY Life Sciences Institute University of Michigan Ann Arbor, Michigan, USA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 30Corporate Drive, Suite 400, Burlington,MA01803, USA 32 Jamestown Road, LondonNW17BY,UK

Copyright © 2009, Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher.

The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher's consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (www.copyright.com), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2008 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters. 0076-6879/2009 \$35.00

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier. com. You may also complete your request on-line via the Elsevier homepage (http://elsevier. com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

For information on all Elsevier Academic Press publications visit our Web site at elsevierdirect.com

ISBN-13: 978-0-12-374547-7

PRINTED IN THE UNITED STATES OF AMERICA
09 10 11 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID

Sabre Foundation

METHODS IN ENZYMOLOGY

Autophagy in Mammalian Systems, Part B

METHODS IN ENZYMOLOGY

Editors-in-Chief

JOHN N. ABELSON AND MELVIN I. SIMON

Division of Biology California Institute of Technology Pasadena, California, USA

Founding Editors

SIDNEY P. COLOWICK AND NATHAN O. KAPLAN

CONTRIBUTORS

Chantal Bauvy

INSERM U756, Université Paris-Sud 11, Châtenay-Malabry, France

Ettore Bergamini

Centro di Ricerca Interdipartimentale di Biologia e Patologia dell'Invecchiamento, Università di Pisa, Pisa, Italy

Cheryl L. Birmingham

Department of Molecular Genetics and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada

Geir Bjørkøy

Biochemistry Department, Institute of Medical Biology, University of Tromsø, Norway

Andreas Brech

Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway

John H. Brumell

Department of Molecular Genetics and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada, and Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada

Brenda G. Byrne

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA

Gabriella Cavallini

Centro di Ricerca Interdipartimentale di Biologia e Patologia dell'Invecchiamento, Università di Pisa, Pisa, Italy

Trinad Chakraborty

Institute of Medical Microbiology, Justus-Liebig University Giessen, Giessen, Germany

Patrice Codogno

INSERM U756, Université Paris-Sud 11, Châtenay-Malabry, France

xiv Contributors

María Isabel Colombo

Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina

Ana Coto-Montes

Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain

Ana Maria Cuervo

Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, USA

Jayanta Debnath

Department of Pathology, University of California, San Francisco, California, USA

Monica A. Delgado

Department of Molecular Genetics and Microbiology, University of New Mexico, Health Sciences Center, Albuquerque, New Mexico, USA

Patrick B. Dennis

University of Cincinnati, Genome Research Institute, Department of Cancer and Cell Biology, Cincinnati, Ohio, USA

Vojo Deretic

Department of Molecular Genetics and Microbiology, University of New Mexico, Health Sciences Center, Albuquerque, New Mexico, USA

Alessio Donati

Centro di Ricerca Interdipartimentale di Biologia e Patologia dell'Invecchiamento, Università di Pisa, Pisa, Italy

Jean-Francois Dubuisson

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA

Zvulun Elazar

Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel

Rasha A.Elmaoued

Department of Molecular Genetics and Microbiology, University of New Mexico, Health Sciences Center, Albuquerque, New Mexico, USA

Eeva-Liisa Eskelinen

Department of Biological and Environmental Sciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland

Contributors

Junji Ezaki

Department of Biochemistry, Juntendo University School of Medicine, Hongo, Tokyo, Japan

Naonobu Fujita

Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan

Monique Gannagé

Viral Immunobiology, Institute of Experimental Immunology, University Hospital of Zürich, Zürich, Switzerland

Dale W. Hailey

Section on Organelle Biology, Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland, USA

Torsten Hain

Institute of Medical Microbiology, Justus-Liebig University Giessen, Giessen, Germany

Sungki Hong

Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA

Tsuneo Ikenoue

Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA

Ken Inoki

Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA, and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA

Terje Johansen

Biochemistry Department, Institute of Medical Biology, University of Tromsø, Norway

Eija Jokitalo

Institute of Biotechnology, Electron Microscopy Unit, University of Helsinki, Helsinki, Finland

Motoni Kadowaki

Department of Applied Biological Chemistry, Faculty of Agriculture, Graduate School of Science and Technology, Niigata University, Niigata, Japan

Md. Razaul Karim

Department of Applied Biological Chemistry, Faculty of Agriculture, Graduate School of Science and Technology, Niigata University, Niigata, Japan

Susmita Kaushik

Department of Developmental and Molecular Biology, Marion Bessin Liver

xvi Contributors

Research Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, USA

Shunsuke Kimura

Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan

Masaaki Komatsu

Department of Biochemistry, Juntendo University School of Medicine, Hongo, Tokyo, Japan

Eiki Kominami

Department of Biochemistry, Juntendo University School of Medicine, Hongo, Tokyo, Japan

Mondira Kundu

Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Trond Lamark

Biochemistry Department, Institute of Medical Biology, University of Tromsø, Norway

Jennifer Lippincott-Schwartz

Section on Organelle Biology, Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland, USA

Alfred J. Meijer

Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Carol A. Mercer

University of Cincinnati, Genome Research Institute, Department of Cancer and Cell Biology, Cincinnati, Ohio, USA

Noboru Mizushima

Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan

Christian Münz

Viral Immunobiology, Institute of Experimental Immunology, University Hospital of Zürich, Zürich, Switzerland

Ichiro Nakagawa

Division of Bacteriology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan

Paul A. Ney

Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, USA

Takeshi Noda

Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan

Michinaga Ogawa

Division of Bacterial Infection, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan

Anders Øverbye

Proteomics Section DNR, Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway

Aud Øvervatn

Biochemistry Department, Institute of Medical Biology, University of Tromsø, Norway

Serhiy Pankiv

Biochemistry Department, Institute of Medical Biology, University of Tromsø, Norway

Simon G. Pfisterer

Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany

James M. Phang

Metabolism and Cancer Susceptibility Section, Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA

Marisa Ponpuak

Department of Molecular Genetics and Microbiology, University of New Mexico, Health Sciences Center, Albuquerque, New Mexico, USA

Tassula Proikas-Cezanne

Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany

Minoo Razi

London Research Institute, Cancer Research UK, London, UK

Frank Sætre

Proteomics Section DNR, Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway

xviii Contributors

Chihiro Sasakawa

Division of Bacterial Infection, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan, and Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan, and CREST, Japan Science and Technology Agency, Kawaguchi, Japan

Ruth Scherz-Shouval

Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel

Per O. Seglen

Proteomics Section DNR, Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway

Oleksandr Seleverstov

Department of Animal Science, College of Agriculture, University of Wyoming, Laramie, Wyoming, USA

Elena Shvets

Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel

Michele S. Swanson

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA

Sharon A. Tooze

London Research Institute, Cancer Research UK, London, UK

Takashi Ueno

Department of Biochemistry, Juntendo University School of Medicine, Hongo, Tokyo, Japan

Cristina Lourdes Vázquez

Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina

Ignacio Vega-Naredo

Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain

Helena Vihinen

Institute of Biotechnology, Electron Microscopy Unit, University of Helsinki, Helsinki, Finland

Contributors

Päivi Ylä-Anttila

Department of Biological and Environmental Sciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland

Sadaki Yokota

Faculty of Parmaceutical Science, Nagasaki International University, Sasebo, Nagasaki, Japan

Yuko Yoshikawa

Division of Bacterial Infection, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan

Tamotsu Yoshimori

Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan

Olga Zabirnyk

Metabolism and Cancer Susceptibility Section, Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA

Ji Zhang

Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, USA

PREFACE

Research into the topic of autophagy started in the late 1950s. At that time, and for the following several decades, there were few methods available for studying this process. The initial methodology relied primarily on electron microscopy, sometimes coupled with subcellular fractionation, and electron microscopy remains one of the principal methods of analysis. Additional techniques were eventually added, which included sequestration and protein degradation assays, and all of these are described in this volume of *Methods in Enzymology*. Overall, however, the methods for examining autophagy in mammalian cells have been relatively limited.

In the 1990s, the autophagy-related (ATG) genes were identified in various fungi, which in part opened a new era, allowing an understanding of the molecular mechanism of autophagy. In addition, the identification of homologues to the fungal genes in higher eukaryotes provided evidence for the role of autophagy in a growing number of processes, in pathophysiology and also in development.

Although there is tremendous conservation among the autophagyrelated genes across species, the relative difficulty of using molecular genetic approaches in mammalian cell culture and, in some cases, the need to monitor autophagy in intact organisms or tissue samples, has limited the development of techniques for assessing autophagy in mammalian systems. By far, the most versatile methodology among the molecular approaches relies on detection of the Atg8 homologue microtubule-associated protein 1 light chain 3, or LC3. The primary reasons for the utility of this protein are that it is often upregulated following autophagy induction, it undergoes posttranslational modifications that can be used to monitor certain aspects of autophagy, and it is presently the only Atg protein that is reliably associated with the completed autophagosome membrane. The LC3 protein can be followed by western blot, fluorescence and immunoelectron microscopy. Accordingly, many of the chapters in this volume describe different ways to use LC3 for following autophagy, and one of the main benefits of these chapters is that they describe specific variations that are applicable to particular systems and/or questions.

Despite the overall robustness of LC3-dependent assays, the entrance of many researchers into this field has also led to the development of new techniques, as well as modifications of earlier approaches. Accordingly, the chapters in this volume describe the use of dyes including DQ-BSA that can be used to monitor amphisome fusion with the lysosome, alternative

XXII Preface

sequestration substrates such as GST-BHMT, the analysis of p62/SQSTM1 that links LC3 with ubiquitin, the use of WIPI-1/Atg18 as a phagophore marker, and methods to monitor selective peroxisome and mitochondrial degradation.

Finally, the chapters in this volume are concerned not just with methodology, but also provide the background that allows the reader to appreciate the importance of monitoring autophagy with regard to the particular questions being asked. This second volume concludes with several chapters that are focused on the analysis of autophagy in connection with microbial pathogenesis and the immune response, as well as autophagy in tissues and intact organisms; these chapters set the stage for the third volume that will be devoted to connections with disease and clinical applications. Indeed, there is growing interest in manipulating autophagy for therapeutic purposes. One hope is that this and the companion volumes of *Methods in Enzymology* will stimulate researchers to pursue ongoing and new lines of investigation into autophagy so that we may continue to understand, and ultimately manipulate to our advantage, this complex and ubiquitous process.

DANIEL J. KLIONSKY

METHODS IN ENZYMOLOGY

VOLUME I. Preparation and Assay of Enzymes

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME II. Preparation and Assay of Enzymes

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME III. Preparation and Assay of Substrates

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME IV. Special Techniques for the Enzymologist

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME V. Preparation and Assay of Enzymes

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VI. Preparation and Assay of Enzymes (Continued)

Preparation and Assay of Substrates

Special Techniques

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VII. Cumulative Subject Index

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VIII. Complex Carbohydrates

Edited by Elizabeth F. Neufeld and Victor Ginsburg

VOLUME IX. Carbohydrate Metabolism

Edited by WILLIS A. WOOD

VOLUME X. Oxidation and Phosphorylation

Edited by Ronald W. Estabrook and Maynard E. Pullman

VOLUME XI. Enzyme Structure

Edited by C. H. W. HIRS

VOLUME XII. Nucleic Acids (Parts A and B)

Edited by Lawrence Grossman and Kivie Moldave

VOLUME XIII. Citric Acid Cycle

Edited by J. M. LOWENSTEIN

VOLUME XIV. Lipids

Edited by J. M. LOWENSTEIN

VOLUME XV. Steroids and Terpenoids

Edited by RAYMOND B. CLAYTON

VOLUME XVI. Fast Reactions

Edited by KENNETH KUSTIN

VOLUME XVII. Metabolism of Amino Acids and Amines (Parts A and B)

Edited by Herbert Tabor and Celia White Tabor

VOLUME XVIII. Vitamins and Coenzymes (Parts A, B, and C)

Edited by Donald B. McCormick and Lemuel D. Wright

VOLUME XIX. Proteolytic Enzymes

Edited by Gertrude E. Perlmann and Laszlo Lorand

VOLUME XX. Nucleic Acids and Protein Synthesis (Part C)

Edited by Kivie Moldave and Lawrence Grossman

VOLUME XXI. Nucleic Acids (Part D)

Edited by Lawrence Grossman and Kivie Moldave

VOLUME XXII. Enzyme Purification and Related Techniques

Edited by WILLIAM B. JAKOBY

VOLUME XXIII. Photosynthesis (Part A)

Edited by Anthony San Pietro

VOLUME XXIV. Photosynthesis and Nitrogen Fixation (Part B)

Edited by Anthony San Pietro

VOLUME XXV. Enzyme Structure (Part B)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XXVI. Enzyme Structure (Part C)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XXVII. Enzyme Structure (Part D)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XXVIII. Complex Carbohydrates (Part B)

Edited by Victor Ginsburg

VOLUME XXIX. Nucleic Acids and Protein Synthesis (Part E)

Edited by Lawrence Grossman and Kivie Moldave

VOLUME XXX. Nucleic Acids and Protein Synthesis (Part F)

Edited by Kivie Moldave and Lawrence Grossman

VOLUME XXXI. Biomembranes (Part A)

Edited by Sidney Fleischer and Lester Packer

VOLUME XXXII. Biomembranes (Part B)

Edited by Sidney Fleischer and Lester Packer

VOLUME XXXIII. Cumulative Subject Index Volumes I-XXX

Edited by Martha G. Dennis and Edward A. Dennis

VOLUME XXXIV. Affinity Techniques (Enzyme Purification: Part B)

Edited by William B. Jakoby and Meir Wilchek

VOLUME XXXV. Lipids (Part B)

Edited by John M. Lowenstein

VOLUME XXXVI. Hormone Action (Part A: Steroid Hormones)

Edited by Bert W. O'Malley and Joel G. Hardman

VOLUME XXXVII. Hormone Action (Part B: Peptide Hormones)

Edited by BERT W. O'MALLEY AND JOEL G. HARDMAN

VOLUME XXXVIII. Hormone Action (Part C: Cyclic Nucleotides)

Edited by Joel G. Hardman and Bert W. O'Malley

VOLUME XXXIX. Hormone Action (Part D: Isolated Cells, Tissues,

and Organ Systems)

Edited by Joel G. Hardman and Bert W. O'Malley

VOLUME XL. Hormone Action (Part E: Nuclear Structure and Function)

Edited by Bert W. O'Malley and Joel G. Hardman

VOLUME XLI. Carbohydrate Metabolism (Part B)

Edited by W. A. WOOD

VOLUME XLII. Carbohydrate Metabolism (Part C)

Edited by W. A. WOOD

VOLUME XLIII. Antibiotics

Edited by JOHN H. HASH

VOLUME XLIV. Immobilized Enzymes

Edited by Klaus Mosbach

VOLUME XLV. Proteolytic Enzymes (Part B)

Edited by LASZLO LORAND

VOLUME XLVI. Affinity Labeling

Edited by William B. Jakoby and Meir Wilchek

VOLUME XLVII. Enzyme Structure (Part E)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XLVIII. Enzyme Structure (Part F)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XLIX. Enzyme Structure (Part G)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME L. Complex Carbohydrates (Part C)

Edited by VICTOR GINSBURG

VOLUME LI. Purine and Pyrimidine Nucleotide Metabolism

Edited by Patricia A. Hoffee and Mary Ellen Jones

VOLUME LII. Biomembranes (Part C: Biological Oxidations)

Edited by Sidney Fleischer and Lester Packer