

HSDPA HSUPA FOR UMTS

High Speed Radio Access for Mobile Communications

Editors

Harri Holma d Antti Toskala TN929.5 H873

HSDPA/HSUPA for UMTS

High Speed Radio Access for Mobile Communications

Edited by

Harri Holma and Antti Toskala Both of Nokia Networks, Finland

JOHN WILEY & SONS, LTD

Copyright © 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

Reprinted May and July 2006

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA
Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany
John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia
John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-01884-2 (HB) ISBN-10 0-470-01884-4 (HB)

Project management by Originator, Gt Yarmouth, Norfolk (typeset in 10/12pt Times). Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire. This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

HSDPA/HSUPA for UMTS

Preface

When the first edition of WCDMA for UMTS was published by John Wiley & Sons, Ltd 6 years ago (in April 2000), 3GPP had just completed the first set of wideband CDMA (WCDMA) specifications, called 'Release 99'. At the same time, the Universal Mobile Telecommunication Services (UMTS) spectrum auction was taking place in Europe. UMTS was ready to go. The following years were spent on optimizing UMTS system specifications, handset and network implementations, and mobile applications. As a result, WCDMA has been able to bring tangible benefits to operators in terms of network quality, voice capacity, and new data service capabilities. WCDMA has turned out to be the most global mobile access technology with deployments covering Europe, Asia including Korea and Japan, and the USA, and it is expected to be deployed soon in large markets like China, India, and Latin America.

WCDMA radio access has evolved strongly alongside high-speed downlink packet access (HSDPA) and high-speed uplink packet access (HSUPA), together called 'high-speed packet access' (HSPA). When the International Telegraphic Union (ITU) defined the targets for IMT-2000 systems in the 1990s, the required bit rate was 2 Mbps. 3rd Generation Partnership Project (3GPP) Release 99 does support up to 2 Mbps in the specifications, but the practical peak data rate chosen for implementations is limited to 384 kbps. HSPA is now able to push practical bit rates beyond 2 Mbps and is expected to exceed 10 Mbps in the near future. In addition to the higher peak data rate, HSPA also reduces latency and improves network capacity. The new radio capabilities enable a new set of packet-based applications to go wireless in an efficient way. For operators the network upgrade from WCDMA to HSPA is straightforward as the HSPA solution builds on top of the WCDMA radio network, reusing all network elements. The first commercial HSDPA networks were launched during the last quarter of 2005.

This book was motivated by the fact that HSDPA and HSUPA are the next big steps in upgrading WCDMA networks. While the WCDMA operation has experienced some enhancements on top of dedicated channel operation, there was a clear need – it was felt – to focus just on HSDPA and HSUPA issues without having to repeat what was already presented in the different editions of WCDMA for UMTS for Release 99 based systems. Also, valuable feedback obtained from different lecturing events on HSDPA and HSUPA training sessions had clearly indicated a shift in the learning focus from basic WCDMA to the HSPA area. Thus, this book's principal task is to focus on HSPA specifications, optimization, and performance. The presentation concentrates on the differences that HSPA has brought to WCDMA radio access. Detailed information about WCDMA radio can be obtained from WCDMA for UMTS.

Preface

Summary of the book's contents.

The contents of this book are summarized in the above diagram. Chapter 1 gives an introduction to the status of WCDMA and HSPA capabilities. Chapter 2 provides an overview of HSPA standardization. Chapter 3 presents the HSPA network architecture and radio protocols. Chapters 4 and 5 explain the 3GPP physical layer HSDPA and HSUPA standards and the background of the selected solutions. Radio resource management algorithms are discussed in Chapter 6. Chapters 7 and 8 present HSDPA and HSUPA performance including data rates, capacity, and their coexistence with WCDMA. Application performance is presented in Chapter 9, and Voice over Internet Protocol (VoIP) performance aspects in Chapter 10. A terminal's radio frequency (RF) requirements are introduced in Chapter 11.

This book is aimed at R&D engineers, network planners, researchers, technical managers, regulators, and mobile application developers who wish to broaden their technical understanding to cover HSDPA and HSUPA as well. The views in the book are based on the authors' opinions and do not necessarily represent their employer's views.

Harri Holma and Antti Toskala Nokia, Finland

Acknowledgements

The editors would like to acknowledge the effort from their colleagues to contribute to this book. Besides the editors themselves, the other contributors to this book were: Frank Frederiksen, Sandro Grech, Jussi Jaatinen, Chris Johnson, Troels Kolding, Martin Kristensson, Esa Malkamäki, Jussi Numminen, Karri Ranta-Aho, Claudio Rosa, Klaus Pedersen, Markus Pettersson, Juho Pirskanen, and Jeroen Wigard.

In addition to their direct contribution, we would also like to acknowledge the constructive suggestions, illustrations, and comments received from Erkka Ala-Tauriala, Jorma Kaikkonen, Sami Kekki, Markku Kuusela, Svend Lauszus, Juhani Onkalo, Jussi Reunanen, Kai Sahala, Sasi Sasitharan, and Tuomas Törmänen. Further, we are grateful for the good suggestions received from the people participating in HSDPA/HSUPA training events in different locations who came up with suggestions as to what constitutes the key topics of interest and what issues deserve attention.

The team at John Wiley & Sons, Ltd deserve to be acknowledged as well for their patience and support during the production process.

We are grateful to our families, as well as the families of all contributors, for the personal time needed in the evening and weekends for writing and editing work.

Special thanks are due to our employer, Nokia Networks, for supporting and encouraging such an effort and for providing some of the illustrations in this book.

We would like to acknowledge Sierra Wireless for permission to use their product picture in the book.

Finally, it is good to remember that this book would not have been possible without the huge effort invested by our colleagues in the wireless industry within the 3rd Generation Partnership Project (3GPP) to produce the different specification releases of the global WCDMA/HSDPA/HSUPA standard and, thereby, making the writing of this book possible.

The editors and authors welcome any comments and suggestions for improvements or changes that could be implemented in forthcoming editions of this book.

Harri Holma and Antti Toskala Espoo, Finland harri.holma@nokia.com and antti.toskala@nokia.com

Abbreviations

16QAM 16 Quadrature Amplitude Modulation

2G Second Generation3G Third Generation

3GPP 3rd Generation Partnership Project64QAM 64 Quadrature Amplitude Modulation

8PSK 8 Phase Shift Keying
A-DPCH Associated DPCH
AAL ATM Adaptation Layer
AC Admission Control

ACIR Adjacent Channel Interference Ratio

ACK ACKnowledgement

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

AG Absolute Grant

AGC Automatic Gain Control

ALCAP Access Link Control Application Part

AM Acknowledged Mode

AMC Adaptive Modulation and Coding

AMR Adaptive Multi-Rate APN Access Point Name

ARIB Association of Radio Industries and Businesses (Japan)

ARP Allocation and Retention Priority

ARQ Automatic Repeat reQuest ASN.1 Abstract Syntax Notation 1

ATIS Alliance for Telecommunications Industry Solutions (US)

ATM Asynchronous Transfer Mode AWGN Additive White Gaussian Noise

BCCH BroadCast Control CHannel (logical channel)

BCFE Broadcast Control Functional Entity
BCH Broadcast CHannel (transport channel)

BER Bit Error Rate

BLEP BLock Error Probability
BLER BLock Error Rate

BMC Broadcast/Multicast Control protocol

BPSK Binary Phase Shift Keying

BS **Base Station**

Base Station Controller BSC Base Station Subsystem BSS **BTS** Base Transceiver Station Carrier-to-Interference ratio C/I

CC Congestion Control CC Chase Combining

China Communications Standards Association **CCSA**

CCTrCH Coded Composite Transport CHannel

Code Division Multiple Access **CDMA CFN** Connection Frame Number CLTD Closed Loop Transmit Diversity

CLTD2 Closed Loop Transmit Diversity mode-2

CMCubic Metric CN Core Network

COST COoperation Européenne dans le domaine de la recherche Scientifique et

Technique

CP Cyclic Prefix

CPICH Common PIlot CHannel Channel Quality Information CQI **CRC** Cyclic Redundancy Check

CRNC Controlling RNC Circuit Switched CS CT Core and Terminals DAB Digital Audio Broadcasting

DCCH Dedicated Control CHannel (logical channel)

DCH Dedicated CHannel (transport channel)

Data Description Indicator DL DownLink

DDI

DPCCH Dedicated Physical Control CHannel

DPCH Dedicated Physical CHannel **DPDCH** Dedicated Physical Data CHannel

DRNC Drift RNC

DRX Discontinuous Reception

DS-CDMA Direct Spread Code Division Multiple Access

DSCH Downlink Shared CHannel DSL Digital Subscriber Line

Discard Timer DT

DTCH Dedicated Traffic CHannel DTX Discontinuous Transmission DVB Digital Video Broadcasting E-AGCH E-DCH Absolute Grant CHannel E-DCH Enhanced uplink Dedicated CHannel

E-DPCCH E-DCH Dedicated Physical Control CHannel E-DPDCH E-DCH Dedicated Physical Data CHannel E-HICH E-DCH Hybrid ARQ Indicator CHannel

Abbreviations xvii

E-RGCH E-DCH Relative Grant CHannel

E-RNTI E-DCH Radio Network Temporary Identifier E-TFC E-DCH Transport Format Combination

E-TFCI E-DCH Transport Format Combination Indicator

ECR Effective Code Rate

EDGE Enhanced Data rates for GSM Evolution EDGE Enhanced Data Rate for Global Evolution

EGPRS Enhanced GPRS EGPRS Extended GPRS

ETSI European Telecommunications Standards Institute

EVM Error Vector Magnitude F-DCH Fractional Dedicated CHannel

F-DPCH Fractional Dedicated Physical CHannel

FACH Forward Access CHannel FBI FeedBack Information

FCC Federal Communications Commission

FCS Fast Cell Selection

FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

FER Frame Error Ratio
FER Frame Erasure Rate
FFT Fast Fourier Transform

FP Frame Protocol

FRC Fixed Reference Channel FTP File Transfer Protocol G-factor Geometry factor

GB GigaByte

GBR Guaranteed Bit Rate
GERAN GSM/EDGE RAN

GGSN Gateway GPRS Support Node

GI Guard Interval
GP Processing gain

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

HARQ Hybrid Automatic Repeat reQuest

HC Handover Control

HLBS Highest priority Logical channel Buffer Status

HLID Highest priority Logical channel ID

HLR Home Location Register

HS-DPCCH Uplink High-Speed Dedicated Physical Control CHannel

HS-DSCH High-Speed Downlink Shared CHannel

HS-PDSCH High-Speed Physical Downlink Shared CHannel

HS-SCCH High-Speed Shared Control CHannel HSDPA High-Speed Downlink Packet Access

HSPA High-Speed Packet Access

HSUPA High-Speed Uplink Packet Access

xviii Abbreviations

HTTP Hypertext markup language
IFFT Inverse Fast Fourier Transform

IP Internet Protocol

IR Incremental Redundancy

IRC Interference Rejection Combining

IS-95 Interim Standard 95

ITU International Telecommunication Union

ITU International Telegraphic Union

LAU Location Area Update

LMMSE Linear Minimum Mean Square Error

LTE Long-Term Evolution
MAC Medium Access Control

MAC-d dedicated MAC
MAC-es/s E-DCH MAC
MAC-hs high-speed MAC

MAI Multiple Access Interference MAP Maximum A Posteriori

max-C/I maximum Carrier-to-Interference ratio

MB MegaByte

MBMS Multimedia Broadcast and Multicast Service

MIMO Multiple Input Multiple Output min-GBR minimum Guaranteed Bit Rate MRC Maximal Ratio Combining

MS Mobile Station

MSC Mobile Switching Centre

MSC/VLR Mobile services Switching Centre/Visitor Location Register

MUD MultiUser Detection

MUX Multiplexing

NACC Network Assisted Cell Change NBAP Node B Application Part

NF Noise Figure Node B Base station

O&M Operation & Maintenance

OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access

OLPC Outer Loop Power Control
OMA Open Mobile Alliance
OSS Operations Support System

OTDOA Observed Time Difference Of Arrival
OVSF Orthogonal Variable Spreading Factor

P-CPICH Primary CPICH
PA Power Amplifier

PAD PADding

PAR Peak-to-Average Ratio
PAS Power Azimuth Spectrum

PC Power Control

Abbreviations xix

PCCC Parallel Concatenated Convolutional Code

PCH Paging CHannel

PCMCIA Personal Computer Memory Card Industry Association

PCS Personal Communication Services
PCS Personal Communication System
PDCP Packet Data Convergence Protocol

PDP Packet Data Protocol
PDU Protocol Data Unit
PDU Payload Data Unit
PF Proportional Fair

POC Push-to-talk Over Cellular

PRACH Physical RACH
PS Packet Switched
PU Payload Unit

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

RAB Radio Access Bearer
RACH Random Access CHannel
RAN Radio Access Network

RANAP Radio Access Network Application Part

RAU Routing Area Update

RB Radio Bearer RF Radio Frequency RG Relative Grant RLC Radio Link Control RLL Radio Link Layer RLS Radio Link Set RMResource Manager RNC Radio Network Controller

RNTI Radio Network Temporary Identifier

ROHC RObust Header Compression

RR Round Robin

RRC Radio Resource Control
RRM Radio Resource Management
RSCP Received Signal Code Power
RSN Retransmission Sequence Number
RSSI Received Signal Strength Indicator
RTCP Real Time Control Protocol

RTCP Real Time Control Protoc
RTO Retransmission TimeOut
RTP Real Time Protocol
RTT Round Trip Time

RTWP Received Total Wideband Power

S-CCPCH Secondary CCPCH

SA Services and system Architecture

SC-FDMA Single Carrier FDMA

Abbreviations Abbreviations

SCCP Signalling Connection Control Part

SCCPCH Secondary Common Control Physical CHannel

SDU Service Data Unit SF Spreading Factor

SGSN Serving GPRS Support Node
SI Scheduling Information
SIB System Information Block
SID Size index IDentifier

SINR Signal-to-Interference-plus-Noise Ratio

SIR Signal to Interference Ratio
SNR Signal to Noise Ratio
SPI Scheduling Priority Indicator
SRB Signalling Radio Bearer

SRNC Serving RNC

SRNS Serving Radio Network System STTD Space Time Transmit Diversity

TC Traffic Class

TCP Transmission Control Protocol
TD-SCDMA Time division synchronous CDMA

TDD Time Division Duplex
TEBS Total E-DCH Buffer Status

TF Transport Format

TFCI Transport Format Combination Indicator
TFRC Transport Format and Resource Combination

THP Traffic Handling Priority

TMSI Temporary Mobile Subscriber Identity

TPC Transmission Power Control

TR Technical Report
TS Technical Specification
TSG Technical Specification Group
TSN Transmission Sequence Number

TTA Telecommunications Technology Association (Korea)
TTC Telecommunication Technology Committee (Japan)

TTI Transmission Time Interval

TX GAP Transmit GAP

TxAA Transmit Adaptive Antennas UDP User Datagram Protocol

UE User Equipment

UL UpLink

UM Unacknowledged Mode
UM-RLC Unacknowledged Mode RLC

UMTS Universal Mobile Telecommunications System

UPH UE Power Headroom

UPH UE transmission Power Headroom URA UTRAN Registration Area

UTRA UMTS Terrestrial Radio Access (ETSI)

Abbreviations

UTRA Universal Terrestrial Radio Access (3GPP)
UTRAN UMTS Terrestrial Radio Access Network

VCC Virtual Channel Connection

VF Version Flag VoIP Voice over IP

VPN Virtual Private Network
WAP Wireless Application Protocol

WCDMA Wideband CDMA WG Working Group

Wimax Worldwide Interoperability for microwave access

WLAN Wireless Local Area Network

WWW World Wide Web 9

Contents

	Preface Acknowledgements			xi	
				xiii	
	Abbreviations				
1	Intro	duction		1	
	Harri Holma and Antti Toskala				
	1.1	1.1 WCDMA technology and deployment status			
	1.2	HSPA st	andardization and deployment schedule	4	
	1.3	Radio ca	pability evolution with HSPA	6	
2	HSPA standardization and background			9	
	Antt	i Toskala a	nd Karri Ranta-Aho		
	2.1	3GPP		9	
		2.1.1	HSDPA standardization in 3GPP	11	
		2.1.2	HSUPA standardization in 3GPP	12	
		2.1.3	Further development of HSUPA and HSDPA	14	
		2.1.4	Beyond HSDPA and HSUPA	16	
	2.2	Reference	es	18	
3	HSPA architecture and protocols				
	Antti Toskala and Juho Pirskanen				
	3.1 Radio resource management architecture			21	
		3.1.1	HSDPA and HSUPA user plane protocol architecture	22	
		3.1.2	Impact of HSDPA and HSUPA on UTRAN interfaces	25	
		3.1.3	Protocol states with HSDPA and HSUPA	29	
	3.2	Reference	es	30	
4	HSDPA principles				
	Juho Pirskanen and Antti Toskala				
	4.1 HSDPA vs Release 99 DCH				
	4.2	Key techi	nologies with HSDPA	33	

vi Contents

		4.2.1 High-speed downlink shared channel	35
		4.2.2 High-speed shared control channel	40
	4.3	High-speed dedicated physical control channel	42
		4.3.1 Fractional DPCH	45
		4.3.2 HS-DSCH link adaptation	47
		4.3.3 Mobility	50
	4.4	BTS measurements for HSDPA operation	53
	4.5	Terminal capabilities	54
		4.5.1 L1 and RLC throughputs	55
		4.5.2 Iub parameters	56
	4.6	HSDPA MAC layer operation	57
	4.7	References	60
5		JPA principles	61
	Karr	i Ranta-Aho and Antti Toskala	
	5.1	HSUPA vs Release 99 DCH	61
	5.2	Key technologies with HSUPA	62
		5.2.1 Introduction	62
		5.2.2 Fast L1 HARQ for HSUPA	64
		5.2.3 Scheduling for HSUPA	64
	5.3	E-DCH transport channel and physical channels	66
		5.3.1 Introduction	66
		5.3.2 E-DCH transport channel processing	66
		5.3.3 E-DCH dedicated physical data channel	68
		5.3.4 E-DCH dedicated physical control channel	70
		5.3.5 E-DCH HARQ indicator channel	72
		5.3.6 E-DCH relative grant channel	73
		5.3.7 E-DCH absolute grant channel	75
		5.3.8 Motivation and impact of two TTI lengths	76
	5.4	Physical layer procedures	77
		5.4.1 HARQ	77
		5.4.2 HARQ and soft handover	79
		5.4.3 Measurements with HSUPA	79
	5.5	MAC layer	80
		5.5.1 User plane	80
		5.5.2 MAC-e control message – scheduling information	81
		5.5.3 Selection of a transport format for E-DCH	82
		5.5.4 E-DCH coexistence with DCH	84
		5.5.5 MAC-d flow-specific HARQ parameters	85
		5.5.6 HSUPA scheduling	85
		5.5.7 HSUPA scheduling in soft handover	86
		5.5.8 Advanced HSUPA scheduling	88
		5.5.9 Non-scheduled transmissions	88
	5.6	Iub parameters	89
	5.7	Mobility	90

Contents

		5.7.1	Soft handover	90	
		5.7.2	Compressed mode	91	
	5.8	UE cap	abilities and data rates	92	
	5.9		ces and list of related 3GPP specifications	93	
6	Radi	o resource	management	95	
	Hari	ri Holma,	Troels Kolding, Klaus Pedersen, and Jeroen Wigard		
	6.1		radio resource management	95	
		6.1.1	RNC algorithms	96	
		6.1.2	Node B algorithms	106	
	6.2	HSUPA	radio resource management	115	
		6.2.1	RNC algorithms	116	
		6.2.2	Node B algorithms	119	
	6.3	Reference	ces	120	
7	HSD	PA bit ra	tes, capacity and coverage	123	
	Fran	k Frederik	sen, Harri Holma, Troels Kolding, and Klaus Pedersen		
	7.1		performance factors	123	
		7.1.1	Essential performance metrics	124	
	7.2	Single-u	ser performance	125	
		7.2.1	Basic modulation and coding performance	126	
		7.2.2	HS-DSCH performance	128	
		7.2.3	Impact of QPSK-only UEs in early roll-out	133	
		7.2.4	HS-SCCH performance	133	
		7.2.5	Uplink HS-DPCCH performance	135	
		7.2.6	3GPP test methodology	136	
	7.3	Multiuser system performance		137	
		7.3.1	Simulation methodology	138	
		7.3.2	Multiuser diversity gain	138	
		7.3.3	HSDPA-only carrier capacity	140	
		7.3.4	HSDPA capacity with Release 99	141	
		7.3.5	User data rates	142	
		7.3.6	Impact of deployment environment	142	
		7.3.7	HSDPA capacity for real time streaming	148	
	7.4	Iub transmission efficiency			
	7.5	Capacity and cost of data delivery			
	7.6	Round trip time			
	7.7	HSDPA measurements			
	7.8	HSDPA	performance evolution	155 159	
		7.8.1	Advanced UE receivers	159	
		7.8.2	Node B antenna transmit diversity	161	
		7.8.3	Node B beamforming	161	
		7.8.4	Multiple input multiple output	162	
	7.9	Conclusions			
	7.10	Bibliography		162 163	