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INTRODUCTION

An inference may be defined as a passage of thought according to some
method. In the theory of knowledge it is customary to distinguish
deductive and non-deductive inferences. Deductive inferences are truth
preserving, that is, the truth of the premises is preserved in the con-
clusion. As a result, the conclusion of a deductive inference is already
‘contained’ in the premises, although we may not know this fact until
the inference is performed. Standard examples of deductive inferences
are taken from logic and mathematics. Non-deductive inferences need
not preserve truth, that is, ‘thought may pass’ from true premises to
false conclusions. Such inferences can be expansive, or, ampliative in
the sense that the performances of such inferences actually increases
our putative knowledge. Standard non-deductive inferences do not
really exist, but one may think of elementary inductive inferences in
which conclusions regarding the future are drawn from knowledge of
the past.

Since the body of scientific knowledge is increasing, it is obvious that
the method of science must allow non-deductive as well as deductive
inferences. Indeed, the explosive growth of science in recent times
points to a prominent role for the former. Philosophers of science have
long tried to isolate and study the non-deductive inferences in science.
The inevitability of such inferences one the one hand, juxtaposed with
the poverty of all efforts to identify them, constitutes one of the major
cognitive embarrassments of our time.

The reasons for compling a book on a subject as expansive as
‘Statistics in Science’ can be traced to the conviction that all non-
deductive inferences in science are ultimately statistical inferences. In
other words, a non-deductive inference in science ultimately reduces to
drawing conclusions about the degree to which hypotheses are sup-
ported by data. Moreover, this support must be probabilistic in
character and cannot be adequately formalized without making use of
probability theory.

As is well known, the first modern use of probability was related to
problems of gambling and insurance involved with predicting future
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viii INTRODUCTION

events. Such predictions are made by stating a probability of occur-
rence for the events in question, on the basis of certain probabilistic
hypotheses (e.g. independence in the case of gambling, known relative
frequencies in the case of insurance).

T. Bayes enlarged the statistical methodology by considering the
probability of a probability distribution. P. S. Laplace and C. F. Gauss
introduced this method in science making use of prior probabilities and
evidencs. J. C. Maxwell, L. Boltzmann, R. Galton and K. Pearson, being
unable to specify any prior distribution for the problems they were
treating, gave up the method envisaged by Bayes and succeeded in
adapting the Galilei hypothetical-deductive methods to cases where the
hypotheses are statistical in character. The kinetic theory of gas and the
‘objectivist’ theory of statistical testing are the splendid results of their
efforts.

The two dominant streams in statistical methodology, Bayesian and
objectivist, cover most of what can be called ‘data analysis’, i.e. trying to
determine what conclusions to draw from data. However, the province
of non-deductive inference has become much wider than data analysis.
For example, the multivariate techniques originally introduced for data
reduction are now used as an exploratory tool in genetics, economics
and social science. Subjective probability was originally introduced to
draw conclusions about statistical hypotheses from data, but is becoming
very widely used in the form of expert opinion in quantitative risk
analysis, policy analysis and mathematical decision support. Proba-
bilistic symmetry originally introduced by B. de Finetti to explain the
prominent role of relative frequencies in probabilistic reasoning, has
become an important tool in understanding the behavior of elementary
particles in quantum physics. In all these cases, ‘probabilistic reasoning’
has wandered off the reservation of mainstream statistics and has
become an integral part of diverse scientific disciplines.

Perhaps the most dramatic example of this is the role of probability
itself in quantum mechanics. In appropriating probabilistic notions,
quantum theory wrought radical changes both in the formalism and in
the interpretation of probability. The extent of these changes is a
subject of a long and very rich discussion which is still in progress.

The International Conference on Statistics in Science was not
organized in an attempt to bring probabilistic thinking back on the
reservation of standard statistical reasoning. On the contrary it is
believed that the proliferation of quantitative probabilistic methods in
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diverse scientific disciplines is salutory and inevitable. However, pro-
liferation makes it difficult to keep track of developments in diverse
disciplines, and probalistic thinking runs the risk of becoming frag-
mented. Those who have experienced the power of analogy in proba-
bilistic reasoning know how high the costs of such fragementation might
be. Researchers in scientific disciplines who employ probalistic methods
in methodologically innovative must communicate with their brethern
in other discipolines.

The conference in Luino was intended to be a first step in this
direction. We cannot claim that the contributors from econometrics,
game theory, risk analysis, population genetics, biology, and quantum
physics embraced each other as long lost family. However, there was a
clear sense of common purpose. Everyone wanted to know what the
others were doing, and everyone came away knowing more than he/she
knew before. Moreover, there were certain common themes which
emerged repeatedly. One such theme was the notion of symmetry, or
exchangeability, which seems to turn up in unlikely places. Another
theme was the recurrent need to codify and justify procedures. Indeed,
the strongest force driving the fragmentation of our discipline is the
pressure to get results within a pre-defined time frame. One does not
have the time to reflect on interesting methodological questions whose
bearing on the application at hand is secondary. Hence, one takes
recourse to ad hoc procedures. These adhockeries accumulate, get
canonized by default, and subsequently pose formidable barriers to
communication,

The organizers of the conference in Luino hope that these proceed-
ings will give the reader a flavor of the atmosphere of the conference,
and will help to establish a unified vision of probabilistic reasoning in
science. The Luino Conference was organized by the Societa Italiana di
Logica e Filosofia delle Scienze and the Istituto Ludovico Geymonat. It
was supported by Acciaiere e Ferriere Vicentine Beltrame S.p.A, Banca
Popolare di Luino e di Varese, Comunita Montana Valli del Luinese
and Comune di Luino. Moreover the Comune di Luino gave hospitality
to the Conference in the Palazzo Verbania thus ensuring a marvelous
venue.

DOMENICO COSTANTINI
ROGER COOKE
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LORENZ KRUGER

METHOD, THEORY, AND STATISTICS:
THE LESSON OF PHYSICS

INTRODUCTION

The subtitle of my paper — The Lesson of Physics — is an overstate-
ment in several ways: The lesson is, of course, no more than the lesson
I have extracted from the history of physics for myself, and that I
would like others to believe as well. Hence, it is only one lesson among
several possible lessons, i.e. a view suggested for discussion. Moreover
the singular ‘the lesson’ requires a historical survey of about 200 years
of physics and a systematic analysis of its present results. Needless to
say, then, that I rely heavily on the work of others, among them several
participants of this conference.

When we talk about knowledge, especially scientific knowledge, we
imply that the things of which we claim knowledge are as we say they
are; and if we say something well-defined, we appear to assume that
they are in a certain well-determined way. If, then, something some-
times happens in this way and sometimes in another, as chance would
have it, we appear to be deprived of knowledge about that thing. This
traditional opposition of chance and knowledge was generally accepted
when modern science emerged. There are even pictures confronting
two allegoric figures Fortuna and Sapientia. A frontispiece of a 16th
century edition of Petrarch, for example, shows Fortuna on the left,
blindfold, holding her wheel and seated on a round, hence unstable
seat. Facing her, Sapientia is firmly established on a square and stable
throne; not only can she see, she can even become certain of herself,
since she is equipped with a mirror that reflects her face.

It is one of the surprising achievements of modern science, if not its
most important achievement, that it has brought even the accidental
under its control. In the terms of the allegory, it has merged Fortuna
and Sapientia into one figure: Scientia Statistica. How has that feat,
undreamed of in Antiquity and the Middle Ages, been made possible?
One necessary condition has been the discovery of the concept of
probability in the second half of the seventeenth century.

Although the concept of probability and modern physics emerged in
the same century, they were by no means natural allies. On the con-

R. Cooke and D. Costantini (eds), Statistics in Science. The Foundations of Statistical Methods in
Biology, Physics and Economics, 1—13.
© 1990 Kluwer Academic Publishers. Printed in the Netherlands.



2 LORENZ KRUGER

trary, physics soon became the most powerful instantiation of the
Sapentia of our allegoric picture. Modern physics, if any science,
acquired its fame as the science of the strict law-governed order of
nature. Under the Newtonian program of classical mechanics the
material world is viewed as matter in motion under the impact of forces
that completely determine its course.

How then did physics turn from a bullwark of determinism into a
bridgehead of statistical science? This drama, as fits a classical play, has
five acts. For brevity let me label them as follows:

the statistics of observations,

the statistical description of complex systems,
the statistical theory of irreversibility,

the statistics of elementary processes,
quantum statistics.

kW

(A more detailed account of 1. through 4. will be found in: Gigerenzer
etal., 1989, Chapter 5.)

The drama turned into a tragedy for the metaphysical religion of
determinism. In the first act it still looks as if statistics were marginal
and a mere methodological tool; but in the end statistical structures are
found at the heart of matter. Of course, the drama is as well known as,
say, King Lear; but it is not viewed as the defeat of determinism by all
beholders. I shall, therefore, review some of its key scenes and try to
expose those episodes during which, as it were, the statistical plot
thickens.

1. THE STATISTICS OF OBSERVATION

Repeated measurements of what is supposed to be one and the same
magnitude as a rule do not agree with each other. How are they to be
combined? The question arose early on in the history of modern
science, ie. around 1600 (Eisenhart, 1971). But it took a while —
roughly a century and a half — to recognize that it should be solved by
investigating the form of the statistical distribution of measured values.
The actual problem facing, say, the astronomer was still more com-
plicated, because often the data had to be related to an entire series of
interconnected magnitudes, e.g. to the successive positions of a planet
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along its path. Around 1800 Legendre and Gauss independently found
the solution that has since been generally accepted: the method of least
squares. It was Gauss (1809) who showed that this method can be
justified on the assumptions that ever larger discrepancies between the
true and the observed values of a magnitude become ever more
improbable, and that the arithmetical mean of the observed values is
the most probable estimate of the true value. This argument marks the
beginning of scientific statistics in physics, i.e. a statistics guided by
theoretical understanding,

Laplace, in 1810, clarified the accidental statistical character of the
error curve further by showing that a sum of many independent errors
will always be normally distributed (cp. Sheynin, 1977). His result was
applied by Hagen (1837) and Bessel (1838), who explained the normal
or Gaussian distribution by arguing that each single observable error is
itself a superposition of many independent invisible elementary errors
— an idea first suggested by Thomas Youngin 1819.

Thus it happened that statistics took a firm hold in physics. But it did
not seem to threaten the deterministic mechanical ideal, since it was
strictly confined to the level of method. Provided that the observational
errors were not systematic, as they are for instance in the so-called
‘personal equation’ for the individual observer, they were not taken
seriously as natural phenomena. The purpose of statistics was to
ascertain the one true and precise value of each magnitude, a value
whose existence appeared to be guaranteed by the available theories.
Physicists had good reasons to believe that their theories would always
be strong enough to tell them what structure they were to expect in
their objects. Hence in physics, as opposed to the social sciences,
statistics remained auxiliary for quite a while. This changed only when
error as the subject matter of the statistical distributions was replaced
by something more physical and more substantial. That occurred in
1860 when Maxwell announced that the velocities of molecules in a gas
were also distributed according to the law of error. His first paper on
the kinetic theory of matter opens the second act of our drama.

2. THE STATISTICAL DESCRIPTION OF COMPLEX SYSTEMS

The basic plot of this second act is very simple. In a nutshell, it runs
thus: The mechanical program in combination with the atomistic
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conception of matter results in a statistical theory. Simple as this plot
may be, it is not obvious how one ought to assess its epistemological, or
possibly even ontological, impact. It is build into the classical mechani-
cal approach that it serves the deterministic ideal only to the extent that
a full and fully determined description of all relevant details of a
mechanical system can be attained for a given time. Now, it is obvious
that this requirement cannot be fulfilled any more as soon as the
atomistic constitution of matter becomes relevant for the explanation of
observable phenomena, as it did, for instance, in the case of thermal
and chemical phenomena in the second half of the 19th century.

How should we describe the epistemological status of the statistical
theory of matter as developed mainly by Maxwell and Boltzmann? Not
only are we incapable to follow the dynamical history of a single
molecule, let alone of all individual molecules, we are also uninterested
to do so. The atomistic and molecular constitution of matter is assumed
in order to explain a range of qualitatively different macroscopic
phenomena. Now, the very success of this explanatory program re-
quires that we correlate an enormously large number of different
mechanical microstates with each single distinguishable macrostate. In
other words, it belongs to the nature of this explanatory theoretical
attempt that large sets of alternative microstates must somehow be dealt
with simultaneously. And here, these states are alternative precisely in
the sense that they do not belong to a common dynamical history; on
the contrary, only one of them can be actual. In this sense, then,
statistical theory is entirely different from dynamical theory. The
connection between these two theoretical approaches consists only in
the fact that the statistics is a statistics of the dynamical magnitudes as
defined in the framework of traditional mechanics.

The additional principles of the statistical theory, however, do not
follow from mechanics; nor do they follow from observation. They are
independent assumptions whose validity is tested by examining the
experimental data that are derivable from them. As a matter of histori-
cal record, this is the correct description. At least, it is largely correct
up to the present. It is true that since Maxwell’s last paper on the
kinetic theory of matter (1878) there was the idea and the program of
deriving those statistical assumptions from the dynamical history of the
single real system, i.e. there was the ergodic hypothesis and later also
the impressive and rapidly expanding field of ergodic theory (see e.g.
von Plato, 1987). But applications to realistic physical cases are at best
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in its early beginnings. It seems therefore, appropriate to view the
ergodic program as one of a reconciliation between the traditional
mechanical picture and the more recent statistical principles, principles
however that had long proved their mettle on independent grounds.

What this means to the epistemologist is that we are entitled to
consider the following question to be open: Does mechanics provide
the adequate picture of macroscopic matter? Or does an adequate
account perhaps require additional concepts which only make sense in
the context of a more abstract theory, a theory that deliberately ignores
a complete description of elementary processes in space and time?
Temperature, for instance, is a good candidate for such a concept. And
after we have been taught by quantum theory that the microworld
resists visualization in classical terms anyhow, the suggestion of a
theory violating some of the traditional pictorial requirements need no
longer be looked upon as still somehow defective. In other words: it is
not clear any more that the basic constitution of matter can be spelled
out in terms of a small set of manifest properties, preferably all primary
properties in the common philosophical sense of that term. Moreover,
at the end of the 19th century, mechanics could not be taken any more
to support philosophical determinism, as it clearly could around 1800.

Nevertheless, one might well say, classical mechanics had not (yet)
been violated; it had just been complemented by additional assump-
tions. Indeed, the hero of the drama, mechanical determinism, was still
well and alive; his rule remained unbroken in most parts of the scien-
tific empire. The thrid act, however, will show how dangereously this
dominion was undermined already then.

3. THE STATISTICAL EXPLANATION OF IRREVERSIBILITY

There are a number of attempts at explaining the pervasive irreversi-
bility of our world: some cosmological, others related to the decay of
elementary particles. But the overwhelming majority of irreversible
processes of our daily experience, like mixing milkk and coffee or
preparing a well-tempered bath from hot and cold water, proceed
according to the second law of thermodynamics. Although this law had
been a major explanandum of the kinetic theory of matter from its
beginnings around 1860, it remained its stumbling stone. Maxwell’s
statistical physics dealt only with equilibrium states; ergodic theory was
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and is similarly restricted. Ludwig Boltzmann struggled with the
mechanical explanation of irreversibility during his whole life. In the
end he scored at best a partial success; but — though this is still a
matter of ongoing research and debate — it may be claimed that he
pointed into the right direction.

In 1872 Boltzmann, on the basis of an ingenious treatment of
molecular collisions, succeeded in defining a certain function of the
molecular velocities, which he called H and which always decreases
with time until it reaches a minimum. Its negative, therefore, could be
identified with the macroscopically defined thermodynamic function of
entropy. At first Boltzmann believed to have given ‘a strict proof’ of the
entropy law on purely mechanical grounds (1872, p. 345). But well-
known objections by his teacher Loschmidt and the mathematician
Zermelo showed that such a proof must be faulty. For the laws of
mechanics are strictly symmetric with respect to time, so that irreversi-
ble phenomena could not possibly be derived from them. In our con-
text, the details of this story cannot and need not be told again. (An
excellent account is found in Brush, 1976).

For my present argument it is enough to remember one pivotal
feature of Boltzmann’s defense (1877): He showed that states with low
H-value, ie. high entropy, can be realized by overwhelmingly many
microstates, whereas states with high H-value, or low entropy, are
realized by comparatively few microstates. He then interpreted the
respective numbers of possible microstates as the probability of the
corresponding macrostates. Finally, he argued that a system will always
move from less probable to more probable states. This argument is
ingenious and persuasive. The trouble is only that it bypasses all
dynamical considerations. For, as long as no dynamical connection
between successive states is taken into account, there is no less reason
to argue that the system has been in a more probable state in the past
than that it will be in a more probable state in the further. Hence, the
source of irreversibility must lie elsewhere. Eventually, Boltzmann
turned to cosmological speculations.

In view of this result of his life-long effort, we are led to ask how he
could ever have obtained his irreversible equation for H, now called the
‘Boltzmann equation’. The answer is simple: In his equation the
ordinary mechanical magnitudes, positions and velocities, have been
replaced by statistical distributions of such magpitudes; only the latter
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enter into dynamical relationships. In other words, in order to obtain
irreversible processes, one needs a dynamical equation that is itself
asymmetric with respect to time, and this type of equation required
statistical magnitudes rather than individual mechanical magnitudes.
Ilya Prigogine and his followers have taken this lesson seriously.
Prigogine argues that time-irreversible phenomena demand a com-
pletely new conception of dynamics (1984, VIL1, X.1) based on dis-
tribution functions as basic magnitudes rather than on positions and
momenta (1962, p. 6). It is not for the philosopher to say whether or
not Prigogine’s program will finally succeed. But this program is
certainly a good reason to direct our philosophical curiosity towards
the question of what the deeper connection is between the statistical
characterization of moving matter on the one hand and the irreversi-
bility of the motion on the other.

A question like this one may sound less strange when we see it
against the background of the statistical constitution of matter as
discovered in quantum physics, to which [ now turn.

4. THE STATISTICS OF ELEMENTARY PROCESSES

Until about 1900, or so one might argue, the use of statistics in physics
was motivated either by methodological convenience, or by certain
goals of theoretical explanation, or finally by a (possibly temporary)
incapability of reconciling mechanics with irreversibility without the use
of statistical theory. Thus a purely epistemic interpretation of statistics
became very common among physicists. It is indeed supported by the
fact that all statistical phenomena discussed so far are mass phenomena,
i.e. they appear only in systems consisting of many different parts. It is
therefore possible to assume that each part taken in isolation has
nothing to do with statistics.

This situation changed fundamentally shortly after 1900 when it
became clear that radioactive decay is most naturally explained in terms
of disintegration probabilities. Soon after the discovery of radioactivity
Pierre and Eve Curie, Rutherford and others showed that the decay
rate is not affected by any circumstance outside the instable atoms,
especially that it does not depend on the mutual interaction of those
atoms. The uniform statistical behaviour of the molecules of a gas had
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been assumed to result from the innumerable collisions that rapidly and
effectively redistribute the mechanical properties of the individual
particles. But this explanation was barred in the case of radio-atoms, so
that, in 1903, Rutherford and Soddy announced the idea of a constant
decay probability per unit of time characterizing each individual atom.
Soon thereafter the consequences of this assumption were worked out:
there must be chance fluctuations of actual decay rates and of the time
intervals between two successive distintegrations. All this was very
nicely confirmed by experiment.

Thus the combination of the following two circumstances created an
entirely new role for statistical ideas in physics:

1. the immediate visibility of statistical fluctuations, and
2. the impossibility of explaining them as mass phenomena.

The disintegration probabilities inherent in individual atoms were a new
kind of source of statistical phenomena.

Of course, radioactive decay by itself would not have been sufficient
to secure, indeed even to recognize, this new source. This recognition
emerged only gradually as quantum physics grew, and was only com-
pleted with the event of quantum mechanics around 1926. In 1928 also
radioactive decay was explicitly integrated into the new theory (Gamow,
1928; Gurney and Condon, 1929). In this theory the discovery that had
first been made with respect to radioactivity was generalized to all
phenomena on the atomic level: Statistical appearances emerge from
the constitution of individual systems or from the nature of individual
processes. That means: Although statistics as a phenomenon requires
by its very concept a sufficiently large number of observable cases, its
cause is not longer sought in the overall structure of the large assembly
of those cases, but in the nature of each and every individual part of the
assembly alike. Quantum mechanics has taught us the idea that it may
belong to the internal constitution of an elementary physical system to
display a statistical pattern of actions or reactions instead of a uniquely
determined behaviour under given circumstances.

Many philosophers, perhaps also some scientists, will protest against
the realistic interpretation of statistical patterns implicit in my descrip-
tion. But I hope to have at least indicated, if not sufficiently explicated,
why this interpretation can hardly be avoided, once two points have
been accepted:
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a) that quantum mechanics is correct, at least in the relevant respects;
and

b) that the elementary systems it deals with, e.g. atoms or nuclei, are as
real as stones and stars, though they certainly are different kinds of
real things with some rather strange properties.

One of those strange properties belongs in my story, since it has to
do with statistics. Its discovery is the fifth and last of act of our drama.

5. QUANTUM STATISTICS

So far we have only considered a completely general feature of quantum
mechanics: it unexceptionally characterizes its objects by probabilities,
hence by patterns of statistical behaviour. Yet, statistics enters quantum
theory in a much more specific and surprising way whenever a system
contains two or more particles of the same kind. In the pre-quantum
statistics of Maxwell and Boltzmann two microstates are already
counted as different when only two particles of the same kind have
exchanged their mechanical properties, even though the two states are,
of course, empirically indistinguishable. In other words, the Maxwell—
Boltzmann statistics relies on the mere conceptual distinguishability, in
a mere analogy to a corresponding macroscopic situation where the
identity of the particles might be ascertained by following their con-
tinuous paths through space and time. In quantum theory, however, two
states that differ only in their labels for like particles are considered to
be not only experimentally undistinguishable but also conceptually the
same state. For physical theory, this means that all expectation values of
observable magnitudes must be invariant under a permutation of
particles of the same kind. A simple (though not the only) way of
satisfying this requirement is to restrict the admissible functions that
describe the state of the particles to two types: symmetric functions that
remain unchanged under the exchange of like particles, and antisym-
metric functions that change their sign under such an exchange.
Philosophically, quantum statistics means that like particles are in
principle indistinguishable entities. (Lucid philosophical analyses are
contained in van Fraassen, 1984. A unified conceptual framework for
quantum statistics is developed in Costantini et al., 1983 and related
papers. A helpful recent overview is given by Stockler, 1987).
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The important point about this indistinguishability is, of course, that
it has testable empirical consequences. One of the most important
consequences in the case of antisymmetry, and historically the root of
the discovery of indistinguishability, is Pauli’s exclusion principle that —
if the completeness of the quantum mechanical description is granted —
forbids any two electrons to assume the same state and thereby secures
the existence of the periodic system of chemical elements. It was again
Pauli (1940) who discovered a fundamental theorem about the statisti-
cal features of matter and radiation: Under very general and highly
plausible assumptions (e.g. the validity of the special theory of relativity
for the microworld), like particles with integer spin cannot be in
antisymmetric states, and particles with half-integer spin cannot be in
symmetric states. If, in agreement with experience, it is moreover
assumed that more complicated symmetry properties do not occur in
nature, like particles with integer spin, or bosons, are always in sym-
metric states, those with half-integer spin, or fermions, are always in
antisymmetric states. Intuitively, this means that arbitrarily many
bosons can behave in the same way, whereas no two fermions can. In
other words, particles with integer spin can cluster; they show one
possible type of statistical behaviour: Bose-Einstein statistics. Particles
with half-integer spin, however, obey another type of statistics: Fermi-
Dirac statistics. Intuitively speaking, they push other particles of their
kind out of the state they occupy, of which Pauli’s original principle is a
special case.

Now, what does Pauli’s spin-statistics theorem — or the experimental
facts that it explains — mean in our context? The spin of elementary
particles is an invariant internal property of any such particle like its
mass, its lifetime, its size and internal structure (if it has any), or certain
quantum numbers. If then all those properties can rightly be interpreted
to give us the real structure of those microentities and if we have good
reasons to believe in Pauli’s theorem, we will have to include the
statistical type of the particles in the real constitution of things. In other
words: statistical patterns of behaviour do not just figure as a general
feature of the microworld, but more specifically they occur in different
variants for different kinds of microparticles. Hence, whoever is
inclined to suspect that the general feature is somehow due to our
epistemological relationship to small dimensions, will find it much
harder to maintain this view with respect to quantum statistics.



