INTRODUCTION TO COMPUTERS,
STRUCTURED PROGRA MMING, AND APPLICATIONS

Module

\w

@,“ 3066929

INTRODUCTION TO COMPUTERS,
STRUCTURED PROGRAMMING,
AND APPLICATIONS

Module

C

Computers and Systems
including
General Introduction

WIRARAHAN

E8066929
C. WILLIAM GEAR
University of Illinois
Urbana, Illinois

SCIENCE RESEARCH ASSOCIATES, INC.

Chicago, Palo Alto, Toronto, Henley-on-Thames, Sydney, Paris, Stuttgart
A Subsidiary of IBM

Compositor Advanced Typesetting Services

Acquisition Editor Robert L. Safran
Project Editor Jay Schauer
Special Editorial Assistance Stephen B. Chernicoff
Text Design Judy Olson
Cover Design Michael Rogondino
ACKNOWLEDGMENTS

Figure C4.2a, courtesy of Control Data Corporation; figures C4.3, C4.4, C4.7,C4.11,C4.12,
courtesy of IBM; figure C4.5, courtesy of Teletype Corporation; figure C4.6, courtesy
NCR; figure C4.8, courtesy of California Computer Products; figures C6.1, C6.2, courtesy
Intel Corporation.

© 1978 Science Research Associates, Inc. All rights reserved.
Printed in the United States of America.

LIBRARY OF CONGRESS CATALOGING IN PUBLICATION DATA

Gear, Charles William.
Computers and systems.

(His Introduction to computers, structured pro-
gramming, and applications)

Includes index.

1. Electronic digital computers. I Title.
I. Series: Gear, Charles William. Introduction to
computers, structured programming, and applications.
QA76.5.G362 001.6'4 77-25547
ISBN 0-574-21191-8

109 87 654 3

INTRODUCTION TO COMPUTERS,
STRUCTURED PROGRAMMING,
AND APPLICATIONS

Module

C

Computers and Systems
including
General Introduction

Preface to This Series

The origins of this material lie in the earlier text Introduction to Com-
puter Science, which taught programming and problem solving in a
language-independent way. The present text, a thorough revision of the
earlier material, seeks the same goal, but places strong emphasis on the
structured, top-down style of problem solving and program development,
which has been found to produce better programs that can be written
and debugged more quickly. Programs are presented in an informal
“pseudolanguage” that can easily be transliterated to common procedure-
oriented languages. Separate language manuals, which discuss the de-
tails of a number of widely used languages, are available with the text.
Each of these language manuals shows how the programming principles
developed in the text can be implemented in a particular language, and
gives versions in that language of many of the example programs from
the text.

An informal language is used in this text in preference to the earlier
book’s flowcharts because flowcharts can be used in an unstructured way,
and can encourage sloppy thinking and sloppy programming. Despite
the recent popularity of “structured” flowcharts, no uniform format
for their use has been accepted, so they are seldom used in this text. The
informal language is written in such a way, however, that programs can
easily be converted into a version of structured flowcharts by drawing
the appropriate boxes around sections of code (see Chapter G3).

The text consists of a general introduction and three modules:
Module C, Computers and Systems; Module A, Algorithms and Appli-
cations; and Module P, Programming and Languages. This structure
enables the student or instructor to choose both the material to be
covered and its ordering with great flexibility. After the General Intro-
duction, Module P can be covered in order or some of its chapters can be
postponed. At the same time, applications from Module A can be used

Cviii

PREFACE

to illustrate the material on programming and to develop problem-
solving skills. Supplementary material from Module C can be used at
any time. For example, some instructors might prefer to cover some
material on computer organization and machine language before getting
involved in higher-level languages, by teaching Chapters C1 and C2
before beginning Module P. Alternatively, these chapters may be delayed
until later, or even omitted entirely. To help the instructor select an
order of instruction, a diagram appears at the beginning of each module,
showing specific prerequisites for each chapter. The general introduction
should be treated as a prerequisite to any of the other modules.

Each volume includes an appendix giving solutions to selected
problems from the ends of the chapters. Problems for which an answer is
given are marked in the problem sets with an asterisk (*); a dagger (%)
indicates that a partial answer is given.

The language manuals are designed specifically to complement this
text. As general programming material is developed here, the details for
a particular language are developed in the corresponding chapter in the
language manual. The reader should read the two chapters at about the
same time, first the chapter in the text for the basic principles, then
the corresponding chapter in the language manual for their specific im-
plementation. If the instructor wants to teach a second language, the
student is well prepared after learning one language in this way. (The
two languages should not be taught in parallel, however, but serially.)
The objective in teaching a specific language this way is to prepare the
student to learn other languages quickly and easily.

Several versions of Module A (Algorithms and Applications) are
available, so that the instructor can select the one that best serves the
needs of the students. A complete set of modules (C, A, P, and a lan-
guage manual) can provide enough material for a two-semester sequence
if all the applications are covered. (A second language can be taught
in the second semester, if desired, while developing the applications.)
Alternatively, some of the applications can be selected along with ma-
terial from Modules C and P to form a one-semester course.

Development of this material would not have been possible without
the capable editorial assistance of Stephen B. Chernicoff. Many people
at SRA, including Jay Schauer and Bob Safran provided help and en-
couragement. I am grateful for the valuable comments and suggestions
of those who reviewed this text—Robert Cannon, University of South
Carolina, J. Flaherty, Renssalaer Polytechnic Institute, Olin G. Johnson,
University of Houston, Larry D. Wittie, State University of New York—
and especially for the help of Marilyn Bohl, who reviewed and con-
structively criticized many versions of both the earlier text and the
present one.

C. William Gear

G2: Problems
G3: Algorithms

(C1: Data representation

C2: Machine language)

C3: Compilers

(C4: Input/output devices

C5: System programs)

C6: Mini and microcomputers)

Prerequisite structure for Module C

Contents

Preface to This Series

General Introduction

Gl

G2

G3

G4

Uses of Computers
Problems

Problem Solving
Problems

Algorithms and Program Descriptions
Problems

Computers and Compilers

Module C: Computers and Systems

Cl

C2

Data Representation

Cl.1 Integers

Cl.2 Fixed-Point Numbers

Cl.3 Floating-Point Numbers
Range in Floating Point
Precision in Floating Point

Cl.4 Binary Representation
Hexadecimal Notation
Floating-Point Hexadecimal

Cl.5 Other Data Types

Problems

Machine and Assembly Language
C2.2 Assemblers
Assembler Directives

Cvii

Cl

C3
c7

C8
C21

C22
C29

C30

C37

C39
C39
C40
C40
C42
C43
C44
C48
C51
C53
C54

C56
Co64
C66

Cvi

C3

C4

C5

C6

Assembling a Program
C2.3 Floating-Point Arithmetic
Addition and Subtraction
Multiplication and Division
C2.4 Other Operations
C2.5 How Does a Computer Work?
Problems

Compilers
C3.1 Compiler Operations
C3.2 Procedure-Oriented Languages

Input/Output Devices

C4.1 The Human Interface
Batch Devices
Interactive Devices

C4.2 Secondary Storage Devices

System Programs and Job Control Languages
C5.1 The Operating System

C5.2 Job Control

Problems

Minicomputers and Microcomputers
C6.1 Minicomputers
C6.2 Microcomputers

Appendix: Answers to Selected Problems

Index

CONTENTS

C68
C69
C70
C71
C72
C74
C78

C80
C80
C82

C86
C86
C86
C90
C95

Cl100
Cl100
Cl103
Cl108

Cl109
Cl110
Cll4

Cll16
Cl21

General
Introduction

Computer science is a discipline concerned with the capabilities of
computers, the types of problems they can be used to solve, and the ways
in which problems should be approached. You do not have to be a com-
puter scientist to use a computer: the applications of computers ex-
tend from science and engineering to business and the humanities. The
aim of this text is to introduce you to the basic principles of computers
and their use.

Our subject can be broken down into three related areas of study:
how the computer works, how to solve problems with it, and how to
communicate the method of solution to it. The text comprises three
main modules corresponding to these areas of study. The General
Introduction offers an overview of the three areas and their inter-
relations, and is intended to provide the background needed for the
study of any of the three individual areas.

Module C (Computers and Systems) deals with the internal organi-
zation and operation of computers and computer systems. How much
of this material should be covered will depend on the needs of the
individual student, although some acquaintance with the computer’s
organization is essential for an understanding of its efficient use. The
type of problems being discussed and the programming language being
used will determine which chapters of Module C should be studied.

Module A (Algorithms and Applications) focuses on computer
applications and methods of problem solution. There are many types
of problems, each requiring different techniques for solution. Although
they have common underlying ideas, you may wish to concentrate on
those problems that interest you. Once you have become a competent
programmer, you should be able to solve a broad range of problems.

C1

C2

GENERAL INTRODUCTION

Module P (Programming and Languages) describes programming
itself: the process of breaking a job into a sequence of simple steps that
can be executed by a computer. Programs in the text will be written in
an informal “pseudolanguage” embodying the common features of most
typical programming languages. Companion language manuals show
how these same programs are actually written in a variety of program-
ming languages.

The computer scientist seeks general principles as they apply to
whole classes of problems; the application programmer is interested
only in finding the best solution to a given problem in a particular
application area. Both must be able to program a wide spectrum of prob-
lems effectively. Some people regard programming as an art, others argue
that it is a science. The label is not important—what is important is to
develop your programming skills so that you can understand computers
and apply them to your own problems.

Chapter

G1

Uses of
Computers

Computers are used in so many different ways in modern life, that they
are frequently misnamed “‘electronic brains.” In fact, all these different
applications use the same basic principles, and all must first be analyzed
as problems by a person before the computer can be used. For example,
a computer may be used to perform routine work of a repetitive nature,
such as maintaining the bank accounts of all the customers of a bank.
Previously this job was done by manual labor. Bookkeepers were taught
the rules to be followed for a typical account, and then they applied
them to each account. Now the same task can be performed by a com-
puter, but the rules must first be established by a person. This is an
example of the use of a computer to save human drudgery in processing
repetitive information (see Figure Gl.la).

Computers are also used to control systems in environments where
it is not feasible for humans to act, as, for example, in unmanned space
flight. A computer may be organized to respond in predetermined ways
to measurements made by on-board instruments, such as radar, and to
signals sent from ground stations. It may also compute the position and
velocity of the spacecraft in order to find out where the craft is heading
in relation to the desired destination. Using the information available,
the computer can send signals to the spacecraft’s control systems to keep
the craft on the desired course and to perform the planned maneuvers.
However, notice again that all the operations have to be planned ahead
by people. A person has to think out the response to each combination
of circumstances and organize the computer to produce those responses.
Thus a person might decide that the braking rockets should be fired with
a thrust proportional directly to the velocity and inversely to the distance
from the target. When the computer is properly prepared, it can control

C3

C4 USES OF COMPUTERS

Computer

BANK
r STATEMENT
t Processing of Output o
| [mmme e p checks and e
(Eheckifeader) deposit slips rinte
———————————— BANK
Record of all STATEMENT
accounts stored MARY DOE
in computer

Computer

7
Sensing devices that .~
can measure speed,
distance, etc

: t
Comparison of Cutpet

actual with desired

flight path
Record of desired
flight path stored
in computer

Control devices that
/ can activate
/ rockets, etc.

/
/
(b) 4
. E Attitude
rockets
g/ Thrust rocket
Display
Visual
feedback Output
Computer
Program to
search for
books on topics
Keyboard __T?ecor_d_of bc;);s_
Input in library and
their topics
(©)

Figure G11 Three uses of a computer

(a) Processing of a repetitive kind—Bank deposits and withdrawals
(b) Control of complex tasks—Guiding a spacecraft
(c) Help in problem solving—Information retrieval

B e SOUN

E

USES OF COMPUTERS

the braking rockets, but the decision about how they are fired is made
by a person while planning the program. This type of computer use is
shown in Figure G1.1b.

A third important area of computer application is to assist people in
solving problems that are beyond human capabilities. For example, a
computer can be used to perform long sequences of computations that
could never be performed by people because of human slowness and
proneness to error. Such problems commonly arise in mathematics or
engineering when computations can only be performed sequentially—
that is, when the results of one calculation must be known before the
next can be performed. Manual calculation of the stresses in a modern
airplane wing, for example, would be out of the question. Although the
designer of the plane makes the basic decisions about the style of the
wing and how the stresses are to be analyzed, it is the computer that
makes it possible to perform the analysis in a practical length of time.

Calculations of this type are different from those that can be done
in parallel. For example, if a bank attracts more customers, it will have
to handle more transactions each day. It can make this possible either
by getting more bookkeepers or by getting a computer. More book-
keepers can do the job because each bookkeeper can be working on a
different transaction in parallel. But hiring more people would not make
it possible to analyze a larger airplane wing than can be analyzed by
one person, because a second person could not start calculating until
the first had finished.

Another example of computer aid to limited human powers is in
information retrieval. A researcher searching through a library may be
aided by a computerized information-retrieval system that can examine
all the records in the library and locate those that contain references to
the topic of interest. In this application, the computer must be organized,
before the search is actually performed, to search through the data in a
particular order and perform the appropriate sequence of comparisons.
The use of a computer to aid people in problem solving is shown in
Figure Gl.1c. Here we see that the action of the user may be influenced
by the output from the computer—the results of the calculations are
displayed to the user immediately, so that the input can be modified if
necessary. If the book sought is not present, the user can search for alter-
native references. If the calculations show that a design is unacceptable,
the user can change the design. This mode of computer use is called
interactive, and is distinguished from batch use, in which the user
leaves a job at the computer center to be processed and gets the output
later, usually in printed form.

Although the amount of work performed in these examples by com-
puters and people working together is much greater than could be per-
formed by people alone, the type of work could be performed, in

C5

Cé

USEs OF COMPUTERS

principle, by people. In any case, the work must be planned and orga-
nized by people. These four example applications—bank record keeping,
control of unmanned spacecraft, execution of large-scale calculations,
and library search—all contain two common elements that must be
considered in any problem we attempt to solve by computer.

The first element of a problem is its control structure. Various actions
must be taken in response to various conditions. Thus in the bank appli-
cation, one control action may be to send a nasty letter to the customer
when a check is deducted from an account with insufficient funds to
cover it. The spacecraft application consists mainly of control actions.
As new data on position, velocity, and other conditions is received, the
spacecraft’s propulsion systems must be controlled to perform the desired
maneuvers. In the calculation of wing stresses, control considerations
are minor, although certain actions may be required if the stresses
exceed limits previously set by the human designer. The library search
may require a series of control actions that depend on the presence or
absence of certain topic titles in the records.

The second element of a problem is the data structure. In the
information-retrieval problem in particular, the structure of the data is
the primary factor that must be considered in solving the problem. The
desired information is already present in the stored data: the researcher
needs to have it presented in a different form. Thus, in one sense, the
problem of finding the telephone number of Mr. X. Smith of 2 Broadway,
New York, is solved by handing the questioner a current copy of the
New York telephone book—but the questioner wants the data organized
in a different way, so that the required number can be read immediately.
The questioner would be satisfied if we replied with the book open to
the correct page, with the required number underlined clearly. We
would have solved the problem by reorganizing the data. When we
retrieve the information requested from a library, all we have done is
reorganize the data and present it differently. In the sense that “two plus
two” and “four” are different ways of saying, or presenting, the same
information, all we are doing when we perform numerical computations
is reorganizing the data—that is, changing its structure.

When we consider ways to solve a problem, we must examine the
structure of the data initially available and decide on the structure of
the data to be presented as the answer. This information may be com-
pletely specified in the description of the problem, or some of it may be
left for the person solving the problem to decide. For example, if a table
of numbers is to be presented, we may have the freedom to arrange those
numbers in a column or in a row. If the table is large and has several sets
of data to be placed in columns or rows, the table arrangement may
affect the organization of the computer program that is written to solve
the problem.

USEs OF COMPUTERS

We must also examine the control actions that will be required and
make sure all possibilities have been considered. What, for example,
should the computer do if, in searching for a given topic in the library,
it finds no references at all? Certainly it should not keep on searching
forever; hence, when a person prepares the computer to perform this
task, the action to be taken in this case must be considered.

Figure Gl.1 also illustrates another very important feature of com-
puters—their input/output (I/O) mechanisms. The computer must be
able to communicate with its environment, to find out what to do and
to return the results. There are many different forms of input and
output. In Figure Gl.1a a check reader and a printer are used. Today,
all checks are encoded magnetically with the account number and other
information, so they can be read by a computer. Before this develop-
ment, the information would have been entered onto a punched card
that could be read by a computer. Figure G1.1b shows on-line data
acquisition and control. Figure G1.1c illustrates the use of an interactive
terminal: a person types data at a keyboard connected to the computer
and sees the results generated by the computer on a display screen.

Chapter C4 discusses a number of common input/output devices.
Although these I/O units may appear very different, at the programming
level they are all essentially equivalent. Input is received by the com-
puter from the input device a character at a time, although in most
languages we deal with a whole string of characters at a time: all the
characters on one typed line, or from one check, or generated by a single
sense device at a particular time. We will say that the computer reads a
line of information, and will make no distinction among different forms
of input. Similarly, on output, the computer transmits a string of char-
acters to the output device. This string could be a line for a printer or
display, or a set of commands to a control device such as a rocket engine.
When we program, we will not have to know anything about the output
device except the format of the string of characters to be transmitted,
so we will not distinguish among different output devices.

Problems

*1, Try to describe very briefly three applications of computers. The
first should be of the routine type that could be done by people.
The second should be of the type that is impossible for people to
perform because of the limitations of human capabilities. The third
should be of the type in which the computer enhances human
capabilities.

#*2, Describe some aspects of the data and the control structures for
each of your three problems.

Cc7

Chapter

G2

Problem
Solving

It is usually not expedient to use a computer to solve only one problem;
rather, if a program is written, it should be capable of directing the com-
puter to solve many similar problems. Thus it would not be worthwhile
to write a program for the information-retrieval problem to look for just
one book, but it would be valuable if many millions of books were to be
referenced over a period of time. Similarly, it would not be practical to
write a program to process only one bank transaction; such a program
would be justified economically only if almost all transactions could be
processed automatically. Therefore, when we write a computer program,
we write it to solve a family of problems, not just one. We must deter-
mine the nature of this family of problems—the types of transactions to
be permitted, the allowable size of the numbers, and so forth—and then
prepare a program that will handle any of the allowed cases. We will say
that we haved solved the problem when we have written such a program.
(Handling a specific case of the data—for example, processing a single
bank transaction—is solving a specific instance of the problem.)

A program for the computer consists of a sequence of operations. It
contains only those operations that the computer can perform. Problem
solving is the process of expressing the solution of complex problems
in terms of the simple operations “understood” by the computer.

In order to solve a problem by computer, whether the problem is
to control a spacecraft or to compute the deflection of a bridge when a
train crosses it, we must pass through certain stages. These are:

1. Formulate the problem precisely. State all assumptions clearly and
specify the actions to be taken in the event of any expected con-
tingencies. (It is difficult to achieve the necessary precision when
the problem is first stated. Usually, later stages of the process reveal

C8

