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PREFACE

During the last decades, the evolution of theoretical statistics has been marked
by a considerable expansion of the number of mathematically and computationaly trac-
table models. Faced with this inflation, applied statisticians feel more and more un-
comfortable : they are often hesitant about their traditional (typically parametric)
assumptions, such as normal and i.i.d., ARMA forms for time-series, etc., but are at
the same time afraid of venturing into the jungle of less familiar models. The prob-
lem of the justification for taking up one model rather than another one is thus a
crucial one, and can take different forms.

(a) Specification : Do observations suggest the use of a different model from the one
initially proposed (e.g. one which takes account of outliers), or do they render plau-
sible a choice from among different proposed models (e.g. fixing or not the value of

a certain parameter) ?

(b) Model Approximation : How is it possible to compute a "distance" between a given

model and a less (or more) sophisticated one, and what is the technical meaning of
such a "distance" ?

(c) Robustness : To what extent do the qualities of a procedure, well adapted to a
"smal1" model, deteriorate when this model is replaced by a more general one ? This
question can be considered not only, as usual, in a parametric framework (contamina-
tion) or in the extension from parametric to non parametric models but also, within a
non parametric framework, for evaluating the "weight" of some technical hypothesis
(such as markovicity, knowledge of the stationary measure of a process, properties of

a regression function, etc.).

sible to adapt procedures in current use within such a framework so as to obtain trac-
table procedures (e.g. the choice of a tractable prior measure in a non parametric
framework, the computation of an approximate bayesian estimator instead of an intrac-
table exact one, the enlarging of the null hypothesis w.r.t. which a statistic is pa-
rameter free, etc.) ?

The 12 Tectures collected in these Proceedings were all presented at the "Rencon-
tre Franco-Belge de Statisticiens" to an audience of research workers in applied and
theoretical statistics. Different classifications could be possible for these papers :
according to the degree of generality of their subjects (papers [1] to [5] were spe-
cially considered as methodology papers, even if they contain some specific results),
according to the type of statistical theory to which they refer (papers [11, [2], [6],
[7]1 and [8] belong to Bayesian statistics), according to their probabilistic framework
(papers [4], [5]1, [11] and, partially, [2] and [9] are devoted to statistics on random
processes; paper [7] uses the classical tools of linear statistics).
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The papers are printed in the order of presentation at the conference. Papers
[1] to [5] were presented the first day, oriented toward a larger audience. Some of
the other papers are more technical. In this introduction, we have classified then
according to the four types of methodological considerations that are listed above.

Bayesian Statistics provide a natural framework for specification problems (and
Box and Tiao's work in 1973 is quite enlightning in this respect). Roughly speaking,
a "huge" model can always be considered as an union of smaller ones, and supplied with
a prior measure. The consideration of the a posteriori measure over different small
models does not present any theoretical difficulty; however, such unions of models may
present some intricacies of interpretation (e.g. is there a common meaning for para-
meters having the same name inside the different models ?) and some computational dif-
ficulties which are analyzed in [1] (L. Simar); a review of some classical examples in
this domain is given in [2] (A.F.M. Smith), where new results are presented for the
treatment of outliers (in the univariate case, the different small models among which
one has to choose are characterized by the number of possible lower and upper outliers;
a multivariate generalization is sketched).

In Bayesian statistics, there are different ways of defining a distance between a
model and a submodel; if the submodel is obtained by reduction on one only of the two
component spaces (parameter space and sample space) one gets a notion of approximate
sufficiency; various such notions are studied in [6] (J.P. Florens); if the reduction
is made on the parameter space, e-sufficiency (with e sufficiently small) can be a
Justification for adopting the reduced model instead of the complete one.

In a non-bayesian framework, one can extend a given model by supposing that the
parameter 6 (initially considered as deterministic) may be submitted to a random per-
tubation in the neighbourhood of a fixed (but unknown) value; for i.i.d. observations
(in the initial model), A. Hillion computes in [10] how the distance (variation dis-
tance, or Hellinger distance) between probabilities (for an infinite sequence of ob-
servations) in the initial model or in the perturbed model are bounded according to
the magnitude of the perturbation; convergence results follow.

Classical statistical analyses of stationary time series rely heavily on the Box
Jenkins approach for ARMA models; the specification of the order of these models is
often heuristically and technically very difficult; in such cases, it is natural to
propose non parametric estimators, for instance for the conditional expectation of
g(xn+s), given (xl, o xn); convergence properties of such kernel estimators (based
on x, and on all couples (xi,g(xi+s)) (1 <i<n-s) are studied in [5] (D. Bosq).
Although heuristically markovian, these estimators rely only on mixing properties of



the process and on hypothesis connecting the kernel and the stationary measure; in
case this stationary measure is unknown, robustness properties (w.r.t. to bad choices
of the kernel) are given in terms of the upper bound of the mean quadratic risk.

The same problem, for multivariate mixing processes, is studied in [11] (G.
Collomb). In this paper, the estimators, called predictograms, are not based on gen-
eral kernels, but on partitions of the space of observations (xl, sxsrol xn) and make
use of the k-uple (xn-k+1’ PPN xn) and of all the (k+1)-uples (Xi—k+1’ cees Xis
g(xi+s)) (k <1 <n-s). Comparison of the speeds of convergence given in [5] and
[11] can be useful for the choice of the number of successive observations used in
the computations (i.e. typically, though the results do not rely directly on Markov
properties, the order of markovicity assumed in the model).

In [4] (P. Doukhan), attention is focused on autoregressive Markov processes
(xn+1 = f(xn) + en); consistent kernel estimators of f are known, under hypothesi;/3
of regularity on f (Ifll_ + Ilf'II°° <o ); their mean quadratic risk is of order n
up to multiplicative constants in which both f and the variance 02 of the noise
€, intervene; simulations are made, in [4], in order to study the deterioration of
the qualities of these estimators for some "bad" functions of regression (i.e. not
satisfying the hypothesis of the convergence theorem) and their sensitivity to the
variations of o° and to the shape of f (e.g. a periodic f, with its period small
w.r.t. o, constitutes a model which is indistinguishable from an i.i.d. model).

In the i.i.d. case, it is a classical problem to test (by means of "least favou-
rable couples”) a ball B(P,r) against an other B(P',r') (the radii being measured
with the Hellinger distance). The error probabilities are known to decrease expo-
nentially to 0; in [9] (L. Birge) explicit computations of the way these error prob-
abilities increase when the "reality" (not necessarily i.d.) lies outside of one of
these balls are given; for example, among n observations, all laws slightly outside
B(P,r), or a small number among the n observations distinctly outside B(P,r). As
a consequence of these computations, one gets properties of robustness w.r.t. the
choice of radii; in other words one gets an answer to the question : what is the
penalty if an attempt of robustification, leading to a model with the ball B(P,r)
instead of its center P, has not been strong enough ?

The classical robust tests between neighbourhoods of given probabilities, as seen
in the last paragraph of (c) above, are no more tractable when the centers of these
neighbourhoods do not correspond to i.i.d. models. In such cases (i. non i.d., or
Markov) one has to use generalizations of the Hellinger distance; balls are not con-
vex any more, and the "least favorable couple" argument does not hold. In the same
paper [9], L. Birge provides adaptations of the classical tests of neighbourhoods,
keeping the fundamental property of exponentially decreasing error probabilities.



In multivariate non parametric testing of hypothesis, it is sometimes proposed
that test functions be constructed by means of parameter free statistics whose law
is multidimensional uniform with respect to any probability in the null hypothesis
(this is for instance quite usual for testing multidimensional normality). Such
parameter-free statistics are constructed by using sufficient statistics whose laws
are absolutely continuous. In [3] (J.P. Raoult, D. Criticou, D. Terzakis) this type
of method is adapted to the non absolutely continuous case (tests are then randomized
tests).

Bayesian non parametric theory, which had been neglected for a long time, became
tractable essentially after the introduction (Ferguson, Doksum, 1973) of Dirichlet
processes which allow easy computations of posterior probabilities on the set of all
distribution functions on R. In [8] (J.M. Rolin) attention is focused on the "gen-
eral theory of processes" properties which make these computations feasible. This
paper characterizes the Dirichlet process by stochastic independence properties rather
than by distributional properties. Some extensions of these independence properties
lead to consider neutral processes as a natural class of tractable prior probabilities.

A final adaptivity problem, in a Bayesian framework, is the one studied in [7]
(M. Mouchart et L. Simar). Computation of the posterior expectation of the parameter,
E(8/x) is often difficult once one decides to step outside a traditional model. Least
squares approximations within more general models are shown to provide tractable adap-
tation; the role of exchangeability conditions is studied in this respect.

Finally, paper [12] (J. Benasseni) is devoted to principal component analysis :
once chosen weights for the observations (in order to define a distance between the
variables), the usual procedures make use of the centering of the observations which
is connected to those weights but, this connection does not exist any more if the
computations are done by using weights and centering constant which are respectively
the coefficients appearing in robust estimates of mean and variance. It is shown that
however this procedure can still be considered as principal component analysis provi-
ded the distance between the variable is suitably defined.

The editors wish to thank the Fonds National de la Recherche Scientifique, the
Center for Operations Research and Econometrics (C.0.R.E. - Université Catholique de
Louvain) and the Séminaire de Mathématiques Appliquées aux Sciences Humaines (SMASH -
Facultés Universitaires Saint-Louis - Bruxelles) for their support to this meeting.

The Editors,

Florens, J.-P.
Mouchart, M.
Raoult, J.-P.
Simar, L.
Smith, A.F.M.
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PROTECTING AGAINST GROSS ERRORS :

THE AID OF BAYESIAN METHODS
by
Léopold Simar

Facultés Universitaires Saint-Louis, Bruxelles
and Center for Operations Research and Econometrics
Université Catholique de Louvain

Abstract

A statistical model is characterized by a family of probability distribution
functions. A1l inferences are then conditional on the hypothesis formalised by this
family.

The statistician often needs to protect himself against the consequences of a
gross error relative to the basic hypothesis : either a specification error for the
functionnal form of p(x|8), or the treatment of outliers. It will be shown in this
paper that the Bayesian approach offers a natural framework for treating this kind
of problem. Different methods are presented : robustness analysis considering the
sensitivity of inference to the model specification; and approximations to Bayesian
solutions which are for a large class of models and sometimes preferable to the exact
solutions valid only for a particular model.

I would 1ike to express my thanks to M. Mouchart with whom I have had numerous
discussions on the subject of this paper and to J.-M. Rolin for his help in. revising
the paper. Errors and shortcomings are exclusively my responsibility.



1. INTRODUCTION

Many statistical procedures are based on statistical models which specify under
which conditions the data are generated. Usually the assumption is made that the set
of observations x,, ..., X, is a set of (i) independent random variables (ii) iden-
tically distributed with common p.d.f. p(xi|e). Once this model is specified, the
statistician tries to find optimal solutions to his problem (usually related to the
inference on a set of parameters 6 € © ¢ R°, characterizing the uncertainty about
the model).

The procedure just described is not always easy to carry out. In fact when con-
fronted with a set of data three attitudes are possible :

(1) The statistician may be a "pessimist" who does not belief in any particular model
p(x|8). In this case he must be satisfied with descriptive methods (like ex-
ploratory data analysis) without the possibility of inductive inference.

(2) The statistician may be an "optimist" who strongly believes in one model. In this
case the analysis is straightforward and optimal solutions may often be easily
obtained.

(3) The statistician may be "realist" : he would like to specify a particular model
p(x|8) in order to get operational results but he may have either some doubt
about the validity of this hypothesis or some difficulty in choosing a particular
parametric family.

Let us illustrate this kind of preoccupation with an example. Suppose that the
parameter of interest is the "centre" of some population. In many situations, the
statistician may argue that, due to a central limit effect, the data are generated by
a normal p.d.f. In this case the problem is restricted to the problem of inference
on u, the mean of the population. But in some cases, he may have some doubt about
these central limit effects and may suspect some skewness and/or some kurtosis or he
may suspect that some observations are generated by other models (leading to the pre-
sence of outliers).

In this context three types of question may be raised in order to avoid gross
errors in the prediction, or in the inference :

(i) Does the optimal solution, computed for an assumed model p(x|6), still have
"good" properties if the true model is a 1little different ?

(ii) Are the optimal solutions computed for other models near to the original one
really substantially different ?

(i1i) Is it possible to compute (exactly or approximatively) optimal solutions for a
wider class of models based on very few assumptions ?



The first question is concerned with the sensitivity of a given criterion to the
hypothesis (criterion robustness). In the second question, it is the sensitivity of
the inference which is analysed (inference robustness). The last question may be
viewed as a tentative first step towards the development of nonparametric methods
(i.e. methods based on a very large parametric space).

The object of the paper is to provide some insight into the problems raised by
the two latter questions. It will be shown that a sensitivity (robustness) analysis
is natural in a Bayesian framework and that distribution-free methods (valid for a
large class of models) can be obtained. Different approaches will be considered,
which can be schematically presented as follows.

Let F be the class of all distribution functions on R and let Fi’ i=0,1,2...
be a family of parametric classes of distributions on R.

Let F, be a wider class of models including F,.
Working with F, we obtain more robust methods
and a sensitivity analysis will be considered in
this neighborhood of F.

Working with F U F UF, ..., allows us to ob-
tain even more robust methods and provides a
framework for analysing the sensitivity of the
inference to the choice of a model.

F Let F, be a "large" class of models so that
"almost distribution-free" methods are obtained.

It will be shown that Bayesian methods provide a natural framework for posing
the problem but that two kinds of difficulties may be encountered : computational
problems and problems of interpretation (choice of parametrisation; assessment of
prior distribution, etc.).



2. INFERENCE ROBUSTNESS

In this section, it will be seen that the Bayesian formulation of the approaches
(1) and (2) above, implies the introduction of some hyperparameters either describing
the neighborhood of a given model, or tracing a family of different model. Therefore,
the mathematical formulation and the difficulties are essentially the same. However,
the structure of the priors will be quite different.

2.1. Neighborhood_of_a_model

The idea is to consider the data to be generated by some member of a wider class
of distribution functions F , including as a subset F; the family of distribution
functions represented by the original model. The date density of F, will now be
written p(x|6,v) where 6 is the parameter of interest and v 1is a new parameter
characterising some neighborhood of the basic model; if v, s the value of v cor-
responding to the basic model, then v & € 6, p(x|6,v;) is a member of Foe

Once the prior on the new parameter space p(6,v) 1is specified, the Bayesian
analysis is straightforward :

p(6,v|x) = p(x|6,v) p(8,v). (2.1)
The following outputs of the analysis are of interest :

(i) p(®]|x) represents the overall (marginal) information on 6. So the inference
on 6 1is now based on a wider class of models and this provides more "robust"
procedures.

(ii) p(v|x) allows one to analyse the plausibility of several models including the
simpler model (v = v ) and it shows how the uncertainty about the model, re-
presented by p(v), is transformed by the data.

(ii1) p(®|x,v) computed for different value of v, reveals the sensitivity of the

inference about 6 to small departures from v = v .

Thus, it appears that the Bayesian approach provides (at least from a theoretical
point of view) the natural framework to think about robustness problems. However,
there may be some practical difficulties in performing this analysis. These difficul-
ties will be discussed after the two following examples.

Example 1 (Box-Tiao (1973)) : The family of exponential power densities
The data density (for one observation) is written as :

p(x|u0,v) = [F(3/2(1+v))]1/23/270'1 exp {- [Eiéégﬁlifll]1/1+v l5:2l2/1+v}
(v+1) [r(1/2(1+v))] r(1/2(1+)) ®

(2.2)



where n€ R, o € R+, -1 <v <+l. This may be written as

1

2/1
/ +v} (2.3)

p(x|1,0,v) * o " exp {- a(v) l_x;_p

and represents a class of symmetric distributions including the normal (v = 0), the
double exponential (v = 1) and the uniform (when v tends to -1). The different
posterior p.d.f. are obtained by numerical integration and Box and Tiao (1973) propose
a particular form for p(v) which facilitates these computations.

Example 2 (Relles-Rogers (1977)) : The family of student densities

1/2 - _n27=(1+v)/2v

p(xl o) = sy © 1 [1 + (%) ] (2.4)
where n€ R, o€ R+, 0 <v <1. In this parametrisation, v is the inverse of
the degrees of freedom; when v = 0 we obtain the normal density and for v = 1, the
Cauchy density. Relles and Rogers (1977) analyse by simulation the robustness pro-
perties of the estimator of u obtained from p(u|x) versus some classical robust
estimators for location parameters. They pointed out the good performances of the
Bayesian estimator.

Comments

The analysis presented above seems elegant and very attractive. But, in addition
to the computional difficulties, there may be a lot of problems in assessing the prior
p.d.f. p(6,v). Usually, this prior is specified through the following decomposition :

p(8,v) = p(8[v) p(v) (2.5)

and the questions are : how to assess p(8|v) for different values of v in a
coherent way ? Does 6 represent the same physical characteristic of the population
for different value of v ? It is reasonable to let 6 and v be prior independent ?
In the latter case p(6|v) = p(8) and the specification of p(6,v) would certainly
be facilitated. Thus it appears that the choice of the parametrisation seems to be
crucial.

In example 1 (exponential power family) M and O represent the mean and stan-
dard deviation of the population for each value of v and Box-Tiao (1973) suppose
that (u,0) and v are a priori independent. The following question may be raised :
is it reasonable that the prior on o is the same for v = 0 (the normal case) and
for v approaching - 1 (the uniform ca%e) ?

In example 2 (student family), the choice of the parametrisation is important.
The student family could have been parametrised as follows :

p(x|u,a,v) = B-TUZITW ot-l [1 & (X:TU)Z]-I/Z\)_I/Z

when o € Rt isa different choice of scale parameter.

(2.6)



We have the following relations between o and o :

2
Var (x|u,0,v) = T_g_?; if v<1/2; (27)
2
Var (x|u,a,v) = 1o if v <172, (2.8)

The question may be raised : is it more reasonable to have a priori independence
between o and v or between o and v ? (Relles-Rogers (1977) have chosen
p(o,v) = p(g)). One could have chosen Yy = 02/1-2v as parameter (with v <1/2). In
this case p and vy would have the same interpretation for all v but the problems
of independence are still present. Note that Box and Tiao (1973) have pointed out
that in the location scale family, a scale parameter is arbitrarily defined up to a
multiplicative constant. If a = f(v) o, the prior independence between o and v
is lost for o and wv.

More generally, it seems reasonable that prior opinion about 6 must influence
one's opinion about the possible models. This appears when writing p(v|x) even if
p(6,v) = p(8) p(v), since

p(vIx) = p(v) [ p(xl8,v) p(e) do. (2.9)
Q

No general answers can be given to this kind of question, but the comments above
show that the elegance of the theoretical development should not hide the practical
problems of interpretation.

2.2. Mixtures of _models

Another way of enlhréing the class of models considered is to extend the ideas
of the preceding section in the following way; let the data density be written as
follows '

pixleya) . (2.10)

where 6, €0,, A €A, and where, for each A € A (A is typically discrete),
p(xlek,l) is a particular parametric density with parameter space OA. Here again,
in addition to the prior densities p(eAlA) a prior probability p(A) for each model

must be specified. As before the Bayesian analysis is elegant and straightforward :

p(xIA) = [ pixlog.n) pisy[) dey. (2.11)
)
We can obtain *
P(8,12) p(x]8;,2)
p(x|X)

We also have the posterior probabilities for each model :

el

p(8,12,x) = (2.12)



