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PREFACE

This volume contains the proceedings of a NATO Advanced Study Institute which
was held in Alghero, Sardinia, in July 1991. '

The development of computers in the recent years has lead to the emergence of
unconventional ideas aiming at solving old problems. Among these, the possibility of
computing directly fluid flows from the trajectories of constituent particles has been much
exploited in the last few years: lattice gases cellular automata and more generally Molecular
Dynamics have been used to reproduce angd-study complex flows. Whether or not these
methods may someday compete with more tradigibnal approaches is a question which cannot be
answered at the present time: it will depend on the new computer architectures as well as on the
possibility to develop very simple models 10 reproduce the most complex phenomena taking
place in the approach of fully developed turbulence or plastic flows. In any event, these
molecular methods are already used, and sometimes in an applied engineering context, to study
strong shock waves, chemistry induced shocks or motion of dislocations in plastic flows, that
is in domains where a fully continuum description appears insufficient. The main topic of our
Institute was the molecular simulations of fluid flows.

The project to hold this Institute was made three years ago, in the summer of 1989
during a NATO workshop in Brussels on the same subject. It was felt by the participants that it
would be profitable to have a longer and more tutorial meeting. We decided to organize it in the
form of a summer school where all methods for computing flows from molecular modelling
could be taught and, to some extent, confronted. However, we did not want to restrict
ourselves to the technique's aspects and we enlarged the spectrum of the lectures by including
the study of fundamental problems as well as of physical applications. It i§ a pleasure to,
acknowledge the encouragement we received from all members of the scientifi¢:committee. A .
non-negligible part of this encouragement is certainly due to the quality of the Parisian
restaurant "Le Petit Zinc" where this project has been discussed.

The division and presentation of the articles of these proceedings has been made a
posteriori by us. The first part is devoted to the Non-Equilibrium Molecular Dynamics studies.
This contains articles which either discuss the theoretical foundation of the method or apply the
method to specific non-equilibrium flows. Besides, Bill Hoover provided us with a personal
view of the history of Non-Equilibrium Molecular Dynamics: this might give an opportunity to
young researchers to realize that progress in Physics is often the result of controversies
Applications to rheology (Ciccotti, Ryckaert, Pierleoni, Michopoulos), Shock waves (Holian,
Carter), strong temperature gradients (Mansour) and convective instabilities (Rapaport) are the
main subjects treated.

Lattice gas papers are the most numerous and this is an evidence of the excitement this
technique has brought to the community of computational physicists. Theoretical foundations
are explained in the basic introduction given by Ernst. Quite interesting also was the study by
Levermore of the rigorous limits which lead to the hydrodynamic Navier-Stokes equations.
Two articles deal with lattice-Boltzmann simulations (Mc Namara and Succi): the ability of



lattice-Boltzmann to reach high Reynolds number flow simulation has been also discussed
during the (second) round-table discussion which is presented in the next chapter, after
presentation of the DSMC metiiod by its main author (Bird) and of the Brownian Dynamical
simulation technique (Bossis).

Applications in lattice-gas simulations are numerous and they range from the study of
diffusion in various lattice models (Cohen) to the flows in porous media (Rothman). Colloidal
systems have been treated by a method which combines lattice-gas efficiency for the fluid
motion and dynamics of the colloidal particles (van der Hoef): there is little doubt that the
ability to mix different approaches on different time and spatial scales will be a key point in the
success of the future methods proposed (see also Hoover). It is worth mentioning that a (more
research oriented) workshop was held in Nice in June 91, just before our school, and that
many papers were also presented at this conference: the proceedings of the Nice meeting are to
be published as a special issue of the Journal of Statistical Physics: they are complementary to
ours.

In the fourth part, a few fundamental problems are reviewed. The paper by Frisch is on
a modern view of the Kolmogorov theory. Besides its historical interest, it also introduces into
the delights of turbulence as seen from a modern point of view. Two other papers follow,
which discuss the relation between Lyapunov exponents, characteristic of the chaotic behavior
in phase space, and transport coefficients, expressions of the dissipative nature of fluids. This
relation was also discussed in a round-table and we have tried to keep the lively character of the
exchanges in the report. The discussions of this round-table as well as of the other one, were
taperecorded, written down by Brigitte Herpigny (thank you Brigitte) and then sent to the
authors for corrections.

Other applications describe the parallel between the statistical approach to turbulence
and to fractures in solids (Chudnovsky), the simulation of membranes by phenomenological
lattice models (Abraham) and the use of cellular automata-like models for the plastic flows in
crystals (Pontikis) ‘and of NEMD on granular flows (Thompson). :

At the TUPAP meeting organized in Brussels in 1956, Berni Alder presented his first
Molecular Dynamics studies of assemblies of hard spheres. As can be read in the proceedings
of this meeting, Berni was then asked whether his new method could lead to a derivation of
hydrodynamics from first principles: Berni replied that one could imagine computations of
fluid flow in high-speed aerodynamics based on MD with the development of larger computing
facilities. It is therefore quite natural that this Institute was held to honor Berni's 65th birthday:
not only did his work set a high standard for subsequent work in the field of non-equilibrium
fluids, but also it has been very important in the understanding of the connection between
hydrodynamic modeling and microscopic motion. This book ends with the long-time tails sto
as it was told to us by its discoverer. :

Our only hope is that the reports made accessible in these proceedings can give readers
a little bit of the pleasure we had in participating to this school.

Michel Mareschal, CECAM (Orsay), and Brad Holian, Los Alamos
November 1991
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FROM FLUID PARTICLES TO PHYSICAL PARTICLES: COMPUTING HYDRODYNAMICS

M. Mareschal* and B. L. Holian**

*Université Libre de Bruxelles, B1050, Brussels, Belgium
**[_os Alamos National Laboratory, Los Alamos, NM 87545, USA

INTRODUCTION

The Navier-Stokes equations of hydrodynamics are partial differential equations which
result from the conservation properties in simple monoatomic or molecular fluids, when
combined with linear constitutive relations. When appropriate boundary conditions are applied
and initial values of the variables are specified, they predict the space- and time- dependant
hydrodynamic fields, that is, the values of mass density p, fluid velocity u, and energy
density e in the fluid. The Navier-Stokes equations were written more than a century ago, and
there seems to be now overall agreement that they contain sufficient physics to describe, for
instance, the very complex and chaotic flows occurring in fully developed turbulence. There is
little doubt that, if one were able to solve them, one could, to a very high degree of accuracy,
reproduce or predict most of the flow problems that occur in physics, chemistry, and
engineering applications.

It is also by now widely accepted that fluids are made of atoms or molecules. A
fundamental description of fluids has however not yet been achieved, in the sense that
rigourous derivation of the full non-linear Navier-Stokes equations from the basic microscopic
equations of molecular motion in fluids is still missing. Intermediate steps however have been
built during the course of time by mathematicians and physicists. In the case of dilute gases a
kinetic equation has been derived by Ludwig Boltzmann, also more than a century ago, which
describe the space time evolution of the velocity distribution function of the gas. The
contraction from the full Boltzmann equation to the hydrodynamic subspace spanning the first
moments of the one particle distribution function has been a central theme of research in
kinetic theory: various methods have been developed which permit to recover the Navier-
Stokes equations in a given limit, and eventually to estimate further approximations. The
peculiarity of the molecular model only enters in the description through the value of the
transport coefficients. This microscopic "derivation” of the Navier-Stokes equations also
predict a loss of validity in the case of very dilute systems, when the mean free path becomes
of the order of the length characteristic of the inhomogeneity. On the contrary, when the
density is increased, it is believed that Navier-Stokes equations can be safely applied to
liquids, compressible fluids, even with very large gradients.

Needless to say, solving the Boltzmann equation is far more complex than solving the
Navier-Stokes equations. The complicated nature of the interactions between the particles
results in a non-linear integro-differential collision operator in the Boltzmann equation.
However, the non-linearity which makes Navier-Stokes equations difficult to solve comes
from the so-called inertial term and has nothing to do with collisions between particles. It has
therefore been argued that one also could study complex flows in gases by using a linearized
collision operator in the Boltzmann equation. It is precisely the same type of arguments which
has been used more recently: in order to reproduce complex flows, microscopic models, such
as lattice-gas cellular automata (LGCA) or lattice Boltzmann simulations, have been proposed,
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which do not properly mimic the fluid on small scales, but appear to reproduce correctly the
behaviour at large spatial and temporal scales. . L ) )

This same point of view has been recently taken in statistical mechanics either to
explore the general relationship between microscopic modelling and the Navier-Stokes
equations or even to challenge traditional solvers of these equations on computers. The
traditional approach of computational statistical mechanics applied to fluids has been to use
molecular dynamics(MD), the computation of many-body trajectories, in the determination of
transport coefficients from molecular interaction potentials. Since this problem does not
require far from equilibrium states, it has been solved by computing equilibrium time
correlation function, actually equilibrium thermal fluctuations, and by using fluctuation
dissipation theorems. An alternative approach has been more recently developed, non-
equilibrium molecular dynamics (NEMD). Instead of computing long equilibrium trajectories,
fluid systems are simulated with external forcing which mimic thermodynamical forces. An
interesting and, to some extent, unexpected result from these studies has been the fact that the
linear relationship between forces and fluxes remain very robust in non-equilibrium states.
Also, complex hydrodynamic' behaviour has been reproduced at and out of equilibrium,
leading to the establishment of the validity of the hydrodynamic model at small space and time
scales even in far from equilibrium states. )

It has not been the original purpose of NEMD to challenge the continuum approach.
"The cost of computing is many orders of magnitude greater when running full MD to model a
typical flow than traditional Navier-Stokes solvers. Atomic modcls have however been
exiremely simplified: lattice gas cellular automata (LGCA) and lattice Boltzmann (LB)
simulations have proved extremely efficient in computing flows. The achievements,
limitations, perspectives of molecular simulations are the subject of these conference
proceedings[1]. Various methods and results developed these last years are discussed in this
volume. We would like to dedicate this introductory article to a presentation of the general
framework which has witnessed these developments. After a gencral presentation of the
Navier-Stokes equations in the first section, we will briefly discuss the kinetic approach and
finally present the main results which have been obtained through the microscopic simulations
of non-equilibrium fluids, mainly by molecular dynamics.

1. THE HYDRODYNAMIC EQUATIONS

The basic balance equations, in a simple monoatomic fluid, are mass, momentum and
energy conservation equations(2,3,4]. Mass density being denoted by p=p(R.t) and fluid
velocity by u=u(R,t), the mass conservation property implies

% , div-loul= | ~
at+d|y {pul=0 1)

which is called the Continuity Equation. The momentum conservation equation reads

Q%);l+div-{puu+P} =0 it e @)

where P is a second order tensor, the pressure tensor. The third equation is for energy

conservation: given e(R,t) the internal energy per unit mass and Jq the heat flux, one can write
the exact conservation equation, '

ol
aple+5)

2

. u

P +div-{pu (c+—2—) +P.u + Jq} =0 (€))
These hydrodynamic equations are exact but not closed since they involve fluxes. In order to
close. them, relations between the quantities involved are needed. First, the constitutive
relations which are phenomenological links between the fluxes P and J; and the gradients
(thermodynamic forces) of the variables themselves. These are the Fourier's law



Jq=-7\.gradT “4)

and Newton's law, which reads

duj duj 2 ., _ .
Pjj=pd;; -n[5é+5;il-3-dw-u8i,j]-C div - u §; ; 5)

These linear relations between fluxes and gradients involve the transport coefficients: A, the
thermal conductivity, 1, the shear viscosity and {, the bulk viscosity, which in general depend
on density and temperature, and therefore they cannot be considered as constant in space when
the fluid is inhomogeneous.

The second set of relations needed to close the hydrodynamic equations is the relation
between p, the hydrostatic pressure, and T, the temperature, with the variables p, u and e.
This is provided by the local equilibrium hypothesis, which states that pressure and
temperature are local equilibrium functions of the hydrodynamic fields e and p: -

p=p(e.p), %= (g—:)p with s=s(e,p). 6)

One can use these relations to express the equations obtained in various equivalent forms,
depending on the variables chosen. ,

These equations can be solved when they are linearized around absolute equilibrium.
For small deviations, one obtains a closed set of five equations which can be put under the
form of "normal modes" solutions, the so-called hydrodynamic modes: two shear diffusive
modes, two damped sound modes and an entropy diffusing mode. These solutions have been
used to model the thermal fluctuations which spontaneously occur in equilibrium fluids and
this has lead to the development of techniques measure transport coefficients through light
scattering experiments[5].

The equation for the fluid velocity, in the case of an incompressible fluid of uniform
temperature (the viscosity being constant) takes the form

ﬂl-+(u.grad)u=-lgrad {p}+T—] Au - @
ot p p

This equation only-depends on the kinematic viscosity, v=1}/p, and has a very rich variety of
solutions. The central dimensionless parameter is the Reynolds number, Re=uL/v, where L is
the characteristic length of the flow: this parameter appears as the ratio of the spatial derivative
appearing in the left hand side (ugradu=uZ/L) to the one appearing in the right hand side
(vAu=vu/L?). The scaling property of eq. (7) states that different flows in the same geometry
can be related by a simple scaling relation if they have the same Reynolds number. For small
Re, the right hand side of eq. (7) dominates and the dissipative terms smooth the flow. On the
contrary, at high Re, the (non-linear) left hand side dominates and the fluid behaves as if it
were inviscid.

Given precise boundary values for the velocity field, one may find in simple cases
stationary solutions to eq. (7). These solutions exist for any value of the Reynolds number.
However, for high values of Re, thesc solutions loose their stability in the sense that small
perturbations like thermal fluctuations which take place in the fluid tend to grow. Actually
there is a critical value of Re at which the fluid undergoes a bifurcation, with the appearance of
a periodic motion added to the stationary solution. Increasing Re will induce more and more
frequencies and phases, giving rise to a motion with more and more degrees of freedom (see
reference 2). At very high values of Re, the number of degrees of freedom tend to infinity.
Simplified models have been developed and studied these last years which aim at
understanding the behaviour of the fluid at and near the transition point.

Although the turbulent behaviour observed in nature is probably well described by
eg. (7), it is sometimes said that there is no theory of turbulence, except for the Kolmogorov
approach: this is a theory which permit to predict local properties of turbulence by scaling
arguments and it is presented in a modern perspective in Frisch's paper in this volume. This
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absence of theory refers to the (up to now) impossibility to simplify the starting equation. One
has to rely mainly on numerical solutions in order to compute the behaviour of the fluid in a
given geometry. Many different numerical techniques have been developed these last years
and many problems have been solved in this way[6].

A numerical solution is basically a transformation of PDE's into a finite set of algebraic
equations[7]: in this sense, numerical simulations of Navier-Stokes equations only contain a
finite number of degrees of freedom or modes and no method can pretend to give a full
solution to the original equations. One has to discretize in space and time and in doing so, for
example, one assumes that the evolution taking place on scales smaller than the grid size or the
timesteps, being quickly damped, does not affect the subsequent fluid behaviour. Also, since
one cannot resolve the small scales of turbulence in some regions, use has to be done of sub-
grid turbulence models. Methods are mostly justified by their successes and limited by their
failures when solutions are compared to experiments. A technique which has achieved
successes in reproducing a 3D flow with Re ranging up to 106 cannot be straightforwardly
applied in other geometries or conditions.

One sometimes also refers to the general name of Navier-Stokes equations to mention
the complete set of the five equations in the general (compressible) case. This set of equations
also leads to phenomena like bifurcations and loss of stability for stationary solutions in
constrained systems: for example, in a fluid layer heated from below, at a critical value of the
Rayleigh number, convection starts in the fluid and a stable structure is formed. While
increasing the external forcing, and therefore the corresponding Rayleigh number, successive
bifurcations will take place, with the appearance of new frequencies and phases, leading to the
same very complex turbulent behaviour. Here also, scaling arguments, simplified models and
numerical solutions have served as basic ingredients in order to understand non-equilibrium
fluids. The study of fluid instabilities[8,9,10,11] has served as a paradigm to develop new
conceptual tools which have served in many other areas of non-linear science, ranging from
chemistry to quantum optics. ; :

2. KINETIC THEORY

Three basic motivations have pushed the development of a more fundamental approach
in the description of non-equilibrium fluids: first, one would like to have a justification of the
constitutive relations and of the local equilibrium hypothesis based on physical grounds.
Second, one is willing to have a theory which would describe the behaviour of fluids in
conditions where the Navier-Stokes equations are no more valid: boundary layers and shock
fronts are typical examples (fully developed turbulence could be also a possible case). Third, it
is desirable to provide a link between the transport coefficients and the microscopic models in
the same way that equilibrium statistical mechanics has given the tool to compute the equation
of state from a hamiltonian.

From these three basic goals, only the third one can be considered as really achieved:
indeed the determination of transport coefficients from microscopic models can be done at
equilibrium and in that case linear response can be safely used: one can derive (formal)
microscopic expressions for the hydrodynamic modes, independently of any approximations,
that is valid for every fluid density: the evaluation of these formal expressions however require
involved computations and approximations. Let us only mention that the details of the

" potential of interaction between model particles do not seem to be very important for the values
of the transport properties[12].

The first two objectives cited above are still the object of intense research. Much of the
work done in this area has been based on the Boltzmann equation, the equation which
determines the time dependence of the one particle distribution function in a dilute gas. It has
also served as an example, a guide for dense fluids. However, successes in kinetic theory of
liquids are limited either to formal results or to near equilibrium situations[13].

Let f1(R,v,t) be the one particle distribution function. Its time evolution can be derived
from the equation of motion of the particles which constitute the fluid: hard sphere particles
which have no interaction energy but have an excluded volume, Lennard-Jones point particles
or soft spheres are typical satisfactory models for atomic fluids. This leads to the so-called
BBGKY hierarchy equations: the equation for f1 involve f7, the one for f3 involve f3 and so
on up to the equation for the full phase space density f). The first equation of the hierarchy
simplifies in the case of a dilute system (nd3—0, with n the number density and d a molecular
size parameter): one then assumes that collisions are instantaneous in time and local in space



and that the two particle correlation function can be factorized as a product of one particle
functions, the celebrated "stosszahlansatz", molecular chaos assumption[14]. Under these
conditions, the Boltzmann equation follows: in the absence of external forces it reads,
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The equation expresses the change of the density f; as due to the inertial term (v.9/0R) and a
gain and loss balance: particles with velocity v at l{ collide with particles of velocity vy at R,i
with deflection angle X and cross section o: g is the relative velocity lv;-vl and the post-!
-collision velocities are denoted with a prime. : .

This is not an exact equation. It is an approximate equation which has been shown to
follow rigourously from dynamics for a finite time interval and in the so-called Grad limit:
n—oo, d—0, nd? finite[15]. Existence theorems for solutions have been proven in specific
cases. More important, this equation has an H-theorem which states that, if a solution exist,
then it evolves in time in a monotonous way to the equilibrium distribution. Most of what we
know on this solution is still based on the perturbative method devised by David Enskog and
independently by Sydney Chapman.

This latter method is based on a theorem which is worth recalling since it leads to a
kind of paradox[16]. This is Hilbert's theorem which states that f{ can be expanded as a
power series in a parameter §, the Knudsen number, then its solution for positive times only
d'epenils on the initial value of the five first moments of f; which are precisely the conserved
variables:

PR.H) = m [dv f1(RV.0) : : (%a)

pP(R.D uR,t) =m [dv v f1(R,v,1) (9b)
(V-u)'2 '

PR.Y eR,) =m [dv m——F1(RV,0) (9)

Note that the left hand side of eq. (8) is of order w/L, while the left hand side is of order
1/%¢oy- Dividing both sides by u/L, we find that the left hand side is of order L/A=3"1, the
inverse of the Knudsen number which is used as a smallness parameter. This leads to a
singular perturbation problem, since the assumed expansion is singular in the limit t—0.
However, the theorem suggests that for times larger than the collision time, there exist
solutions which depend only on the first five moments of f] and not on the full f{ at t=0: these
are called normal solutions.

The Chapman-Enskog[17] method and a mathematically sounder method subsequently
developed by Grad[18,19], the moment method, are explained at length in classical textbooks
on kinetic theories. They lead to successive approximations of the equations for the conserved
variables, the smallness parameter being the Knudsen number as shown on the table below
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