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Introduction

In spite of the expected impact of the events of 11 September 2001 on the economy
in general and travel in particular, we have had an impressive response for this
conference as evidenced by the increase in both the number of initial abstract
submissions and final contributed papers included here.

The two conferences on data mining and sensor fusion are again presented under a
single track. A tradition started last year, this helps in recognizing, exploiting, and
nurturing the synergy between the two fields. The resultant intermingling of the two
groups should help the overall advancement of the state of the art. The fact that the
printed volumes are being made available on-site aids the goal of rapid dissemination
of the most recent developments in these areas. Thus, it effectively complements the
peer-reviewed archival publications that, by their very nature, represent a much slower
process.

The conference and papers have been grouped into 13 sessions dealing with attributes
extraction, assessment and selection, approximate reasoning, pattern analysis and
visualization, association rules, knowledge discovery processes, data mining tools, web
applications, text data and electronic commerce applications, medical, laboratory, and
natural resource applications, and miscellaneous tools and applications. As in previous
years, the conference, reflecting the diversity of the program committee, has global
representation from over 15 different countries (Australia, Brazil, Chile, China,
Denmark, Finland, France, Germany, Hong Kong, India, Japan, Malaysia, Poland,
Taiwan, Turkey, Ukraine, and USA). This increase from past years demonstrates a
widening of the appeal of the conference in a geographical sense.

Given the continued growth in the response to this conference, we plan to offer it again
in the coming year. Accordingly, we hope and expect to see an even larger and wider
participation. Anyone interested in active participation in planning and conference
program development process should contact me at belur@ieee.org as early as
possible. Further details regarding the call for papers and schedule for the next year will
be made available in due course on the Internet at SPIE (http://www.spie.org) as well
as my home page (http://belur.tripod.com). Finally, it is indeed my pleasure to
acknowledge the authors for choosing this avenue for the presentation of their work and
thereby contributing to its success. | would also like to take this opportunity to thank
the members of my program committee and the session chairs for their cooperation and
support.
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“kaayena vaachaa manasendriyairvaa Be it with my body, or with my mind
budhyaatmanaavaa prakR ~ ite svabhaavaat With words, or organs of any kind,
With my intellect, or with my soul,
Or by force of Nature pushing me to my goal,
Whatever it is, with all these | do,

Oh! Supreme Lord! | surrender to you.

karomi yadyat sakalaM parasmai

shriiman naaraayaNaayeti samarpayaami”

Belur V. Dasarathy
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Feature Transformations and Structure of Attributes

Tsau Young (T.Y.) Lin
Department of Mathematics and Computer Science
San Jose State University
San Jose, CA 95192

ABSTRACT

Let V be a set real world entities, that admits a relational model. An attribute induces an equivalence relation on V and
will be regarded as such. Let A* be the set of such equivalence relations and their refinements. Then the smallest
sublattice L(A*) generated by A* in I1(V) is called generalized relation lattice. The set of the granules in L(A*) whose
cardinality is above certain threshhold is the set of all possible patterns derivable from the given attributes (features) of
the given relation.

1. INTRODUCTION- WHAT IS DATA MINING?

What is data mining? There are many popular citations. To be specific, [4] defines data mining as the non-trivial process
of identifying valid, novel, potentially useful, and ultimately understandable patterns from data. Clearly it serves more
as a guideline than a scientific definition. “Novel,” “useful,” and “understandable,” involve subjective judgments; they
cannot be used for scientific criteria. Nevertheless, it does imply two very important points:

patterns, and
real world implications.

For the first point, it is difficult to capture a perfect definition. In practice, however, working definitions that cover
sufficient large class of examples are adequate. In database mining, repeated occurrence is a well accepted criterion. A
sub-tuple is an association rule (a pattern), if the frequency of occurrences is above certain threshold.

For second point, we note that though subjective judgmental terms are meaningless scientifically, some terms, such
as “useful,” do have significant implication, namely, patterns should reflect real world phenomena; this is critically
important. For example, the following assertions,

all data are ended with 5 characters “z”
all tuples are ended with 111 (a numerical constant)

are obviously patterns of data. The frequency is indeed high, however, we are not interested in such pure patter of data.
In the current state of arts, the exclusion of such patterns is relied on human judgments. Naturally one would ask

Could we exclude them scientifically?

Using data model, it is rather difficult; it involve the notion of invariance of attribute transformations; see appendix We
settle this question rather easily by taking an alternative approach; first, we propose

Data mining is to find real world patterns in the portion of the real world that the data is represented about.

This paper was presented at 25" IEEE computer software and application conference, Chicago, Oct 8-12, 2001 under the title “The
Lattice Structure of Database and Mining Multiple Level Rules.” Due to some error, the text was not in the proceedings. The verbatim
copy will appear in the Bulletin of International Rough Set Society (no copy right). Here is the first publication with revised title.

Data Mining and Knowledge Discovery: Theory, Tools, and Technology 1V, Belur V. Dasarathy, Editor,
Proceedings of SPIE Vol. 4730 (2002) © 2002 SPIE - 0277-786X/02/$15.00



To use such a notion of data mining, a mathematical model of real world is needed [7, 8,9, 11]; this is the main topic of
next section.

2. MODOLING THE REAL WORLD

How should we model the real world? One of the oldest models of real world is the model theory of first order logic.
Briefly, a model is, among others, a Cantor set (of real world entities) together with a relational structure [3]. We will
consider the simplest one, namely, the relational structure consists of a finite set of equivalence relations. Interestingly,
such a structure turns out to be the world model of relational database theory.

2.1. The Basic World Model of a Relation

A relation is a knowledge representation of a set of real world entities by tuples of attribute values. Note that such a

representation is merely a reflection of certain intrinsic mathematical structure of the real world. In this section, we will
examine such a structure.

We will illustrate the idea by example. Table 1 illustrates the details of a knowledge representation,
K: V — (S#, STATUS, CITY),
which maps entities to tuples: The right hand side (of the arrow) is a classical relation, and the left hand side is the set of

real world entities. Mathematically, Table 1 is the graph, (x, K(x)) of the function K (the representation). Such a graph is
called an information table (also known as information system or knowledge representation system) in rough set theory.

Y K | (S# :STATUS : CITY)
Vi — | (S | TWENTY : C)
W — | (S, 'TEN ' Cy)
V4 — | (S4 ! TWENTY : C))
Vs — | (Ss ! THIRTY | Cy)

Table 1. An Information Table; arrows and parentheses will be suppressed

Fgure 1. The Partition induced by STSTUS

Proc. SPIE Vol. 4730



i us look at the STATUS in Table 1. The three distinct attribute values classify the real world entities into three
istnct classes; see Figure 1.

Equivalence. | Attribute value Attribute
Class (meaningful name )

* identity equiv. relation | S#

Vi, V4 TWENTY STATUS
Vy, V3 TEN

Vs THIRTY

Vi,Vy C CITY
V2,V3 &

Vs G

'fable 2. The three partitions induced from Table 1

Such a classification, mathematically defines a partition or an equivalence relation; note that a partition induces an
equivalence relation and vice versa. By apply similar arguments to each attribute, we have three equivalence relations;
see Table 2.

This illustration can easily be extended to general cases: Let K be a relation that represents the set V of real world
entities. Let A ={A', A%, ..., A"} be the set of attributes.

Proposition 2.1.1. Any subset of A, in particular, each attribute A’ induces a partition (an equivalence relation) on V, in
particular the equivalence relation Ag'.

Note that different Al‘s may give the same AEi's. Let Ag ={AEI, Agt, ... Ag"} be the bag of (not necessary distinct)
equivalence relations. We will regard attributes as the names of equivalence relations, that is, Al = NAME(A¢), and
attribute values the names of equivalence classes. When such names are given, we say it is a named equivalence relation.
Ag is the set of named equivalence relations.

Definition 2.1.1. The pair (V, Ag) is the basic world model (BWM) of the given relation K.

BWM is the model in the first order logic, in which the relational structure is a finite set of equivalence relations. We
believe the “correct” place to do the data mining is the (V, Ag), not the relation K which is merely a knowledge
representation of BWM. From different consideration, we also reached BWM-ing and called it machine oriented
modeling [9, 11].

Such phenomena were observed independently by Z. Pawlak (1982) and T. T. Lee (1983) [5], [18]. Pawlak called the
pair (V, Ag) a knowledge base or an approximation space, if Ag has only one equivalence relation. The theory is called
rough set theorys it is essentially a computing of granules [12, 20].

T.T. Lee took global view. Instead of granules, he considered the partitions. He expressed many relational database
concepts by some notions of partitions, e.g., functional dependency by refinement We combine both approaches.

2.2. Relation Lattice

The power set 2* of forms a lattice (Boolean algebra), where meet and join operations are the set theoretical union and
intersection respectively; please notice the fwist from the common usage. Let TI(V) be the lattice of all possible
equivalence relations (partitions) on V, where meet is the intersection of equivalence relations and join is the “union;”

the “union” UA¢ is the smallest refinement of all A¢, J=1,2,... TI(V) is called a partition lattice by Lee Proposition
2.1.1 implies

Proc. SPIE Vol. 4730



Proposition 2.2.1. There is a map
0: 2% > TI(V),
that respects the meet, but not the join, operations.

Definition 2.2.1. The image Im@ was called the relation lattice by Lee; we will denote it by L(Ag) or simply L(A); see
Convention 2.3.3.

Lee noted that

1. The join in L(A) is different from that of IT(V).
2. So L(A) is a subset, but not a sublattice, of TI(V).

The latter one is the point of our departure: The fact that L(E) is not a sublattice implies that the structure of L(E) is
incomplete; we will explore its full structure.

2.3. Multi-level World Models and Generalized Relation Lattice

In the Appendix, we show that a concept hierarchy of a given attribute Ay is a conceptual naming scheme of a finite
chain of refinements of Agj, where 0(A)) = AEj . A refinement of AEj will be referred to as a derived attribute, denoted by
D(Ag)); it is a partition of the base concepts (attribute values). A base concept is a name of an equivalence class of Ag/,
and a high level concept is a name of an equivalence class (granule) of base concepts and hence is an equivalence class
of V, whose equivalence relation is coarser than Ag.

Definition 2.3.1. The smallest sublattice of I1(V), that contains Im®, is called the generalized relation lattice (it is a
relation lattice of generalized concepts) and will be denoted by L(Ag*) or simply L(A*); see Convention 2.3.3.

The intent of the notation will be clear soon. Let X be a set of (or an) equivalence relation(s) on V. We will use D(X),
X* and X" to denote a refinement, the set of all refinements (including X itself) and strict refinements (not including X
itself) of X respectively. Each (strict) refinement will be called a (strictly) derived equivalence relation. Ag™* and AEi+
are the set of all derived and strictly derived equivalence relations of Ag,i=1, 2, ... m. Ag* and Ag" consists of all
derived and strictly derived equivalence relations of Ag; note that Ag* o Ui AEi*. And that Ag* D U; Ag™.

Proposition 2.3.1. The smallest sublattice of I1(V), which contains E*, is L(Ag*).

Proqf: Le; H be the smallest lattice that contains AEi*, i=1,2,...,m, he_:nce it contains Ag*. Further, note that each
6(A") = Ag' is contained in H and Im® consists of all possible meets of O(A'),i=1, 2, .. ., n, so Im® is contained in H.
Obviously H is a sublattice of L(Ag*), by definition, H= L(Ag*). Q.E.D.

If each equivalence class of a refinement is given a conceptual name, then we have

Corollary 2.3.2. L(Ag*) contains all possible non-equivalent concept hierarchies of every attribute in A.

Convention. 2.3.3. We will suppress the subscript E from now on, so A' means an attribute as well as the corresponding
equivalence relation and A* is the set of all refinements of A or derived attributes; see section 4.

Definitions

2.3.2. The pair (V, A*) is called the multi-level world model (MWM ) of the given relation K.
2.3.3. The pair (V, A*) is called the high level world model (HWM) of the given relation K.

Proc. SPIE Vol. 4730



2.3.4. An equivalence class of any partition in L(A*) will be referred to as a multi-level granule; that of L(A) a primary
level granule; that of E a base granule; and that of A", i=1,2, . .. a high level base granule. A general term, granule,
refers to one of the above.

A database can be viewed as a logic system [18, 19]. If we replace all multi-level base granules by their names, then
lattice expressions become logic formulas.

Proposition 2.3.4. A concept in L(A*) can be expressed by a logic formula of multi-level base concepts.

3. DATA MINING VIA WORLD MODEL

Main Theorem All possible patterns in the given relation K are the granules in L(A*) whose cardinality is above certain
threshhold.

From the prospect of this theorem, the goal to find all possible association rules in L(A) (the classical apriori algorithms)
may not be a reasonable goal, since L(A), evwn not a sublattice of L(A*), is not a natural scope to search. We would
rather serach in L(A*) or any of a sublattice. For a similar reason, the classical AOG try to find all possible rules in a
given refinement chain of A may not be nature either? These will be the future research issues.

3.1. Association rules - high frequency patterns

Association rules are the primary examples of high frequency patterns. We will see in basic world model, the frequency
of occurrences is translated into the cardinal number of some granules (equivalence classes) in L(A*).

Let us set up some notations: We will use the lower case b to denote an attribute value, and the upper case B the
corresponding granule, that is, b = NAME(B). Observed that frequency of b; is Card(B;), the cardinal number of B;, and
frequency of b =(b,, b, . . . b,) is Card(B), where B = N, B;.

Theorem

3.1.1. b;, is an association rule (of length 1), if Card(B;) > threshhold.

3.1.2. A subtuple b is an association rules (of length n), if Card(B) > threshhold,

3.1.3. A high level concept p is a multi-level association rules, if P is a multi-level granule in L(A*) and Card(P) >
threshhold.

To search for high/multilevel rules [2, 5] reduce to search the granules in L(A*). For more general form [15] (using
binary relations instead of equivalence relations) the problem is harder. Note that if we replace the h-level concept q by
the equivalence class of (h-1)-level concept x, that is, the equivalence class q = NAME([x]), then any (p, y) for y€E qis
said to be a soft rule [16].

Theorem 3.1.4 A logical formula of attribute values is a pattern (generalized association rules) iff the cardinal number
(of the corresponding algebraic expression of granules) > threshhold

This general notion of association rules is a rephrase of [9, Theorem 2.2.1]. It is a comprehensive formulation, all
primary and high level rules are included. The algebraic expression of granules is referred to as the meaning of the
corresponding logic formula.

3.2. Decision Rules - high confidence pattern
The primary examples of high confidence pattern are Pawlak’s rough set and Quinlan’s decision trees. Basically, both
divide the attributes into two categories, condition and decision attributes. Such an information table is called a decision

table. Both theories offer various efficient ways of defining the condition and decision partitions so that the former is a
refinement to the latter one with minimal errors.
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