
CHARLOTTE W. PRATT • KATHLEEN CORNELY

Essential Biochemistry

ESSENTIAL BIOCHEMISTRY

CHARLOTTE W. PRATT

Seattle Pacific University

KATHLEEN CORNELY

Providence College

江苏工业学院图书馆 藏 书 章

John Wiley & Sons, Inc.

About the cover

Cytochrome c, a small protein whose structure, function, and evolution have been thoroughly studied, symbolizes the major role of proteins in biochemistry. In addition, cytochrome c and its bound heme group participate in a central pathway for energy transduction. To this background is added the small molecule ATP, the energy currency of all living cells and, as a nucleotide, a representative of another category of ancient and essential biological molecules.

Senior Acquisitions Editor Senior Development Editor Marketing Manager Production Editor Senior Designer Illustration Editor

Production Management Services

Photo Editor Photo Researcher Patrick Fitzgerald Ellen Ford Robert Smith

Sandra Dumas Kevin Murphy Anna Melhorn

Suzanne Ingrao/Ingrao Associates

Hilary Newman Teri Stratford

This book was typeset in 10/12 Garamond Light by TechBooks/GTS Companies, Inc. and printed and bound by Von Hoffmann Corporation, Inc. The cover was printed by Von Hoffmann Corporation.

The paper in this book was manufactured by a mill whose forest management programs include sustained yield harvesting of its timberlands. Sustained yield harvesting principles ensure that the number of trees cut each year does not exceed the amount of new growth.

This book is printed on acid-free paper. ⊗

Copyright © 2004 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, E-mail: PERMREQ@WILEY.COM. To order books or for customer service, call 1-800-CALL-WILEY (225-5945).

Pratt, Charlotte, W., Cornely, Kathleen Essential Biochemistry

0-471-39387-8 0-471-45166-5 WIE ISBN

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

ABOUT THE AUTHORS

CHARLOTTE PRATT received a B.S. in biology from the University of Notre Dame and a Ph.D. in biochemistry from Duke University. She is a protein chemist who has conducted research in blood coagulation and inflammation and was a member of the Center for Thrombosis and Hemostasis at the University of North Carolina at Chapel Hill. She is currently affiliated with Seattle Pacific University, where she has taught biochemistry. Her interests include molecular evolution, enzyme action, and the relationship between metabolic processes and disease. She has written numerous research and review articles, has worked as a textbook editor, and is a co-author, with Donald Voet and Judith G. Voet, of *Fundamentals of Biochemistry*.

KATHLEEN CORNELY holds a B.S. in chemistry from Bowling Green (Ohio) State University, an M.S. in biochemistry from Indiana University, and a Ph.D. in nutritional biochemistry from Cornell University. Her experimental research has included a wide range of studies of protein purification and chemical modification. She currently serves as a Professor of Chemistry and Biochemistry at Providence College where she has taught courses in biochemistry, organic chemistry, and general chemistry. Her recent research efforts have focused on issues related to chemical education, particularly the use of case studies in biochemistry education. Several of these case studies have been published in the chemical education literature and others are collected in her book *Cases in Biochemistry*. She also serves on the editorial board of *Biochemistry and Molecular Biology Education* and is a member of the Educational and Professional Development Committee of the American Society for Biochemistry and Molecular Biology.

PREFACE

We set out to write an introductory blochemistry textbook because we believed that there was a need for a new approach to the subject and that students could clearly benefit from our efforts. The result of our inspiration is *Essential Biochemistry*, a textbook that focuses on the chemistry of biochemistry and places it in biological context. Our experience with students as well as advances in cognitive theory prompted us to combine relatively short text chapters with extensive problems sets in order to maximize opportunities for students to learn through problem-solving. We also recognized the advantages of providing well-integrated multimedia exercises to reinforce and extend principles introduced in the text. For this reason, the text and media components were developed in tandem. We believe that this book provides an ideal balance of elements that will ease the efforts of instructors and facilitate learning by students.

A Modern Approach

Writing a new biochemistry textbook provides an opportunity not just to convey the latest research findings but also to approach the subject with a fresh perspective. Biochemistry is an enormous field, and it has always been a challenge to give students a solid foundation in the subject, particularly in a one-semester course. We saw the need for a modern textbook that would introduce students to a large and ever-growing subject, that would provide broad coverage without being overwhelming, that would explore important topics in detail, that would not minimize chemical rigor, and that would provide students with knowledge and tools that they could apply to other areas of chemistry and biology.

Essential Biochemistry differs somewhat from other textbooks in its organization and in the way material is presented. For example, there are no separate chapters devoted to carbohydrate and lipid structure. We believe that students can learn about molecular structures and terminology as they study molecules in the context of their biological functions and their metabolic transformations. We also chose to focus on aspects of biochemistry that tend to receive little coverage in other courses or present a challenge to many students. Thus, we include discrete chapters on motor proteins, enzyme mechanisms, enzyme kinetics, oxidative phosphorylation, photosynthesis, and DNA repair.

By departing somewhat from the traditional table of contents, we hope to provide students with a solid introduction to modern biochemistry. We believe that depth of coverage is often more important than breadth. Wherever possible, we describe the physiological context of biochemical processes. Finally, we present examples of chemical phenomena to illuminate general themes of biochemistry, not necessarily to illustrate all the details of a biochemical process.

In a short textbook, every example must count. For this reason, a single topic explored in depth not only tells an interesting story, it can provide insights into a number of biochemical principles. For example, myoglobin appears repeatedly in Chapter 4 to explain various aspects of protein structure and function. In Chapter 6, chymotrypsin highlights various features of enzyme action. Regulation of fuel metabolism by insulin and glucagon introduces the principles of signal transduction in Chapter 16.

In a similar vein, different topics within a chapter are linked by placing them in the broader context of a biological "story," often a disease. In Chapter 3, the genetic nature of cystic fibrosis provides a backdrop for topics ranging from DNA sequencing to protein expression. The generation of a nerve impulse ties together information about membrane permeability, transport, and fusion in Chapter 8. In Chapter 14, lipid metabolism is linked to atherosclerosis; in Chapter 18, cancer is the framework for a discussion of DNA repair.

In our experience, students sometimes miss the forest for the trees. To counteract this tendency, we have intentionally left out some details, particularly in the chapters on metabolic pathways. This allows us to focus on some general themes, including the stepwise nature of pathways (Chapter 10) and their evolution (Chapter 11).

It is our hope that by approaching biochemistry as a guidebook rather than as a catalog, this textbook will allow students to master the subject at several levels while minimizing the need for rote memorization.

Problem-Based Learning

Developments in cognitive learning theory as well as the results of classroom research indicate that students learn more when they can construct their own knowledge, for example, by answering questions and solving problems. Students who are actively engaged with the material are more likely to retain information. In fact, we designed *Essential Biochemistry* so that students can take an active role in their education. For example, each chapter begins with a list of Learning Objectives, and brief questions periodically prompt the students to review particular objectives. A checklist at the end of each chapter helps students organize their study efforts.

Most notably, each chapter includes an extensive problem set. The 20 chapters of *Essential Biochemistry* are intentionally succinct so that students can extend their learning through active problem-solving. Virtually all of the problems require analysis rather than simple recitation of facts. Many problems are case studies based on data from research publications and clinical reports. Not only do these problems provide a glimpse of the "real world" of science and medicine, they present students with novel situations and raw data that must be interpreted and analyzed. Complete solutions to all problems are placed in an appendix so that students can receive immediate feedback.

Of course, problem-solving is not the only route to understanding, and productive learning must incorporate both student-centered and instructor-centered approaches. By providing a generous selection of problem-solving opportunities, *Essential Biochemistry* can accommodate courses with varying emphasis on problem-based learning.

Multimedia Components

From the outset, we intended the media components to fully integrate with and complement the text. Although the book can stand alone, a full appreciation of the structural and dynamic aspects of biochemistry requires a medium more versatile than the printed page. The media package that accompanies *Essential*

aid the student, an overview figure introduced in Chapter 9 is repeated in each subsequent chapter, with the portion relevant to that chapter highlighted.

Chapter 10 introduces glucose structure as a prelude to glycolysis and other pathways of carbohydrate metabolism. The structures and metabolism of some other sugars are included in Chapter 10, but because there is no chapter solely dedicated to carbohydrate structure, students are spared the need to memorize structures and nomenclature that appear nowhere else in the book.

In order to emphasize biochemical principles and to minimize the number of structures and enzymes presented to students, some steps of some metabolic pathways are not shown. For example, the reactions in the rearrangement phase of the pentose phosphate pathway (Chapter 10) and the Calvin cycle (Chapter 13) are not shown explicitly. Only the major pathways of lipid metabolism are shown in Chapter 14, and much of the bulk of traditional amino acid and nucleotide metabolism has also been excluded from Chapter 15.

A short chapter on photosynthesis (Chapter 13) follows the chapter on oxidative phosphorylation (Chapter 12) so that students can more easily discern the similarities between these processes.

Chapter 15 covers amino acid and nucleotide metabolism by focusing on reactions involving nitrogen. This allows a complete overview of the "biological" nitrogen cycle by following nitrogen fixation, assimilation, synthesis and degradation of amino acids and nucleotides, and nitrogen disposal via the urea cycle. By covering nitrogen metabolism in this manner, students are exposed to all the relevant pathways and can focus on important reactions without getting bogged down in a comprehensive recounting of all the reactions of all these pathways. Thus, there is no separate chapter on nucleotides (their structures are first presented in Chapter 3 in the context of DNA structure, and their metabolism is described in the context of amino acid—derived biomolecules in Chapter 15).

Signal transduction is covered in the context of regulation of mammalian fuel metabolism (Chapter 16), which creates an opportunity to summarize the major features of the metabolic pathways described in Chapters 10–15.

In order to focus on principles rather than details, the discussions of DNA replication (Chapter 17) and transcription (Chapter 19) do not make a sharp distinction between prokaryotic and eukaryotic systems. The overall processes are presented using examples from both types of systems, and brief notes explain how they differ.

A chapter on cancer and DNA repair (Chapter 18) provides an opportunity to tie DNA metabolism to various aspects of cell biology (e.g., cell cycle control and apoptosis) and reinforces understanding of DNA structure and function (first presented in Chapter 3) by showing how DNA is damaged and how it can be repaired.

Because replication, transcription, and translation are typically also covered in other courses, Chapters 17–20 focus primarily on some of the biochemical details of these processes, such as topoisomerase action, nucleosome structure, mechanisms of polymerases and other enzymes, structures of accessory proteins, mechanisms for proofreading during polymerization and aminoacylation, and chaperone-assisted protein folding.

Pedagogical Features

Each chapter of *Essential Biochemistry* is designed to be self-contained so that it can be covered at any point in the syllabus.

 Each chapter begins with a paragraph (This Chapter in Context) to help orient the reader to the main topics of the chapter and how they relate to surrounding chapters.

- A short example of a **biochemical application** opens each chapter.
- A list of Learning Objectives precedes the text of each chapter. Students
 are periodically prompted to review the objectives and to answer Study
 Questions that reinforce each objective.
- Reminders to explore the **Media Exercises** appear at appropriate places in
 the chapter. The text includes additional cross-references to specific topics
 in the exercises. The exercises animate complex processes and show
 detailed molecular structures using a Chime-based interactive format. Four
 Review Exercises provide supplemental background material. Most of the
 media exercises are designed so that students can proceed at their own
 pace, viewing animations, manipulating molecular structures, and answering questions.
- Sentences summarizing **key points** are in italics. **Key terms** are in bold-faced. Their definitions are also included in the glossary and form the basis of the online quiz. **Key equations** are boxed for emphasis.
- **Sample Calculations** illustrate the use of important equations in thermodynamics (Chapter 1), acid—base chemistry (Chapter 2), binding phenomena (Chapter 4), enzyme kinetics (Chapter 7), transport processes (Chapter 8), equilibria (Chapter 9), and redox chemistry (Chapter 12).
- Some material that is of a higher level or that is thematically distinct from the bulk of the chapter is set off in **boxes** so as not to distract the reader from the main thread of the discussion.
- Illustrations include **photos from research publications** and **computer- generated molecular models** designed specifically for *Essential Biochem- istry*. Many small figures are incorporated directly into the text. An **overview figure** illustrating all the major metabolic pathways is introduced in Chapter 9 and revisited in subsequent chapters on metabolism. Chapters 10 and 14, which focus heavily on pathways, include an additional summary figure as a study aid.
- Each chapter ends with a large selection of **Problems**, including some multistep case-type problems based on the recent literature. The problems require students to apply information rather than simply recall memorized details. **Complete Solutions** to all problems are provided in the appendix.
- An annotated list of Selected Readings following each chapter includes recent short papers, mostly reviews, that students are likely to find useful as sources of additional information. Some Relevant Web Links are included on the accompanying Web site (www.wiley.com/college/pratt).
- Each chapter includes a **Summary** of the main points. A **Checklist** at the
 end of the chapter reminds students to review the Learning Objectives, solve
 the problems, complete the relevant media exercises, take the glossarybased quiz, explore the Web sites listed online, and consult the list of
 selected readings for further information.
- Four **Instructor's Resources**, part of the media package, include lecture-ready slides and student activities on the Human Genome Project, bacterial drug resistance, proteomics, and phylogenetic trees.

Acknowledgments

We would like to thank everyone who helped develop *Essential Biochemistry*, including Senior Editor Patrick Fitzgerald; Developmental Editor Ellen Ford; Media Editor Linda Muriello; the Production Management Services of

Ingrao Associates; Production Editor Sandra Dumas; Senior Designer Kevin Murphy; Photo Editor Hilary Newman; Illustration Coordinator Anna Melhorn; Media Project Manager Holly Rioux; and Editorial Assistants Justin Bow and Dana Kasowitz. Special thanks goes to the media team at Science Technologies, James Caras, Paige Caras and Barrie Kitto, for their superb work on the media package.

We also thank all the reviewers who provided essential feedback on manuscript and media, corrected errors, and made valuable suggestions for improvements throughout the writing and development process. They include:

Paul Azari, Colorado State University Allan Bieber, Arizona State University Jeffrey Brodsky, University of Pittsburgh Carolyn S. Brown, Clemson University Kim Colvert, Ferris State University Charles Crittell, East Central University David W. Eldridge, Baylor University Jeffrey Evans, University of Southern Mississippi Wilson Francisco, Arizona State University Edward Funkhouser, Texas A&M University Don Heck, Iowa State University James R. Heitz, Mississippi State University Todd Hrubey, Butler University Christine Hrycyna, Purdue University Barrie Kitto, University of Texas, Austin S. Madhavan, University of Nebraska Marilee Parsons, University of Michigan Scott Pattison, Ball State University Richard Posner, Northern Arizona State University Russell Rasmussen, Wayne State College Melvin Schnindler, Michigan State University Tammy Stobb, St. Cloud State University Michael Sypes, Pennsylvania State University Linette Watkins, SW Texas State University Lisa Wen, Western Illinois University Beulah Woodfin, University of New Mexico

Many of the molecular graphics that illustrate this book were created using publicly available coordinates from the Protein Data Bank (www.rcsb.org). The figures were rendered with the Swiss-Pdb Viewer [Guex, N., Peitsch, M.C., SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling, *Electrophoresis* **18**, 2714–2723 (1997); program available at www.expasy.ch/spdbv] and Pov-Ray (available at www.povray.org).

FOR THE STUDENT

HOW TO USE THIS BOOK

Welcome to Biochemistry! Your success in this course will depend to a great extent on your willingness to take an active role in your education. Learning biochemistry requires more than simply reading the textbook, although we recommend that as a first step! *Essential Biochemistry* has been designed and written with you in mind, and we urge you to take advantage of all it has to offer.

Biochemical knowledge is cumulative; it is not something that can be learned all at once. We advise you to keep up with your reading and other assignments so that you have plenty of time to reflect, ask questions, and, if necessary, seek help from your instructor. As you read each chapter of the textbook, make sure you understand how it fits into the course syllabus. Use the study aids provided in the textbook: First, note the list of learning objectives at the start of the chapter. At the appropriate points, you will be asked to review each objective and answer one or more study questions. Be sure to view the media exercises that expand on material covered in the textbook. These exercises include animations of dynamic biochemical processes and interactive molecular graphics. You can enrich your understanding of biochemistry by exploring the exercises and answering the questions they pose. Consult the review exercises if your chemistry background is weak.

As you study, note the key sentences that are highlighted in italics. Be able to define terms in boldface, and test your knowledge by taking the online quiz. Most importantly, solve the problems at the end of each chapter. You should make every effort to complete all the problems without looking at the answers in the appendix. Developing problem-solving skills will facilitate your understanding of biochemistry and will help pave the way to success in any future academic or career endeavor.

Finally, use the summary and checklist at the end of every chapter as a guide to help you study. Take advantage of the additional resources available—such as the list of selected readings and Internet sites—if you need help, are curious about biochemistry, or need up-to-date information as a starting point for a class project.

In writing *Essential Biochemistry*, we endeavored to select topics that would provide a solid introduction to modern biochemistry, which is a vast and ever-changing field. We realize that most students who use this book will not become biochemists. Nevertheless, it is our hope that you will come to understand the major themes of biochemistry and see how they relate to current and future developments in science and medicine.

Charlotte W. Pratt Kathleen Cornely

BRIEF CONTENTS

PART I MOLECULAR STRUCTURE AND FUNCTION	
CHAPTER 1 The Chemical Basis of Life	2
CHAPTER 2 Aqueous Chemistry	24
CHAPTER 3 From Genes to Proteins	52
CHAPTER 4 Myoglobin and Hemoglobin: A Study of Protein Structure and Function	90
CHAPTER 5 Cytoskeletal and Motor Proteins	136
CHAPTER 6 Chymotrypsin: A Model Enzyme	166
CHAPTER 7 Enzyme Kinetics and Inhibition	198
CHAPTER 8 Biological Membranes	232
PART II METABOLIC REACTIONS CHAPTER 9 Overview of Mammalian	
Metabolism and Free Energy	276
CHAPTER 10 Glucose Metabolism	302
CHAPTER 11 The Citric Acid Cycle	342
CHAPTER 12 Oxidative Phosphorylation	370
CHAPTER 13 Photosynthesis	398
CHAPTER 14 Lipid Metabolism	424
CHAPTER 15 Nitrogen Metabolism	462
CHAPTER 16 Regulation of Mammalian Fuel Metabolism	500
PART III MANAGEMENT OF GENETIC INFORMATION	
CHAPTER 17 DNA Replication	530
CHAPTER 18 Cancer and DNA Repair	556
CHAPTER 19 Transcription and RNA	580
CHAPTER 20 Protein Synthesis	612

CONTENTS

	 -	_
	K	

MOLECULAR STRUCTURE AND FUNCTION

CHAPTER 1		CHAPTI	ER 3	
The Chemical Basis of Life	2	From G	enes to Proteins	52
1. WHAT IS BIOCHEMISTRY?	3	1 • DNA	IS THE GENETIC MATERIAL	53
2 • BIOLOGICAL MOLECULES	4	The r	nucleotide components of nucleic acids	
Cells contain four major types of bior			tructure of DNA	
There are three major kinds of biolog	gical polymers		tructure of RNA	
3 • ENERGY AND METABOLISM	11		denaturation and renaturation	
Free energy, enthalpy, and entropy			CENTRAL DOGMA	62
What makes a process spontaneous?	v		ENCING	65
Why is life thermodynamically possib			oxy DNA sequencing	
4. THE ORIGIN AND EVOLUTION OF LIF	E 14	Many	genes are sequenced in pieces	
The prebiotic world		4 • MANI	PULATING DNA IN THE LABORATORY	70
Origins of modern cells			ction enzymes: scissors that cut DNA at	
BOX 1-A Quantitative biochemistry	8		ecific sequences nbinant DNA	
BOX 1-B How does evolution work?	16		olymerase chain reaction	
		5•GENO		79
			plexity and gene number	19
_			me sequencing	
CHAPTER 2			do genome data tell us?	
Aqueous Chemistry	24		criptomics and Proteomics	
	•	BOX 3-A	DNA in the courtroom	72
1. WATER MOLECULES FORM HYDROG	EN BONDS 25	BOX 3-B	What is a clone?	73
Hydrogen bonds are one type of elec	ctrostatic force		Transgenic organisms and gene therapy	76
Water dissolves many compounds			Some model organisms for	70
2 • THE HYDROPHOBIC EFFECT	30		ne studies	80
Amphiphilic molecules experience be interactions and the hydrophobic of	effect	BOX 3-E	Transcriptomics and proteomics	85
The hydrophobic core of a lipid bilay to diffusion	er is a barrier			
3 • ACID—BASE CHEMISTRY	34	CHAPTE	r 4	
[H ⁺] and [OH ⁻] are inversely related		Mvoglo	bin and Hemoglobin:	
The pH of a solution can be altered			of Protein Structure and Function	90
pK values describe an acid's tendency		n orac,	or rotem structure and runction	90
The pH of a solution of acid is related	d to the p K	1 • PROT	EINS ARE CHAINS OF AMINO ACIDS	93
Buffers			amino acids have different	,,,
BOX 2-A Sweat and exercise	34		emical properties	
BOX 2-B Acid—base balance in humans xiv	44	Peptic	le bonds link amino acids in proteins	

Amino acid sequencing		BOX 5-B Altering the shape of hair	155
The amino acid sequence is the first level of protein structure		BOX 5-C Genetic collagen diseases	158
2 • SECONDARY STRUCTURE: THE CONFORMATION			
OF THE PEPTIDE GROUP	104	CHAPTER 6	
The α helix			
The β sheet		Chymotrypsin: A Model Enzyme	166
Proteins also contain irregular secondary structure	400		
3. TERTIARY STRUCTURE AND PROTEIN STABILITY	108	1 • WHAT IS AN ENZYME?	167
Proteins have hydrophobic cores		A note on nomenclature	
How are proteins stabilized? Do cross-links stabilize proteins?		2 • HOW DO ENZYMES WORK?	171
Protein folding		A catalyst lowers the activation energy barrier	
	116	Enzymes use chemical catalytic mechanisms	
4•MYOGLOBIN, AN OXYGEN-BINDING PROTEIN	116	1. Acid–base catalysis	
Oxygen binding depends on the oxygen concentration		2. Covalent catalysis	
5. HEMOGLOBIN, A PROTEIN WITH		3. Metal ion catalysis	
QUATERNARY STRUCTURE	118	The catalytic triad of chymotrypsin promotes peptide bond hydrolysis	
Advantages of quaternary structure The evolution of hemoglobin		3 • THE UNIQUE PROPERTIES OF ENZYME CATALYSTS	181
Oxygen binding to hemoglobin		Transition state stabilization	101
What is the structural basis for cooperative behavior?		Proximity, orientation, and electrostatic catalysis	
Additional factors regulate oxygen binding <i>in vivo</i>		4. WHAT ELSE CAN CHYMOTRYPSIN TELL US?	185
BOX 4-A Chirality in nature	96	Evolution of serine proteases	100
BOX 4-B X-Ray crystallography	109	What determines substrate specificity?	
BOX 4-C Protein misfolding and disease		How is chymotrypsin activated?	
	115	Protease inhibitors limit protease activity	
BOX 4-D Sickle-cell anemia, the first "molecular" disease	125	BOX 6-A Blood coagulation requires a cascade of proteases	188
		BOX 6-B Emphysema, elastase, and smoking	191
CHAPTER 5			
Cytoskeletal and Motor Proteins	136	CHAPTER 7	
1. MICROFILAMENTS ARE MADE OF ACTIN	138	Enzyme Kinetics and Inhibition	198
Actin is a polymer of globular subunits	-20		-,-
Microfilaments continuously extend and retract		1 • INTRODUCTION TO ENZYME KINETICS	199
2 • MYOSIN: A MOTOR PROTEIN ASSOCIATED WITH ACTIN	141	2 • DERIVATION AND MEANING OF THE MICHAELIS—MENTEN EQUATION	201
Myosin has two heads and a long tail		The Equations of chemical kinetics	
Myosin operates through a lever mechanism		What is the rate equation for an enzyme-	
3.TUBULIN FORMS HOLLOW TUBES	146	catalyzed reaction?	
The tubulin dimer		What does $K_{\rm M}$ represent?	
Microtublule dynamics		What is the catalytic constant?	
Some drugs affect microtubules		$k_{\rm cat}/K_{\rm M}$ indicates catalytic efficiency	
4 • KINESIN: A MICROTUBULE MOTOR PROTEIN	149	Experimental determination of $K_{\rm M}$ and $V_{\rm max}$	
Kinesin's two heads work together		Not all enzymes fit the simple Michaelis– Menten model	
Kinesin is a processive motor		1. Multisubstrate reactions	
5 • KERATIN IS AN INTERMEDIATE FILAMENT	152	2. Multistep reactions	
Keratin forms coiled coils		3. Nonhyperbolic reactions	
6 • COLLAGEN: AN EXTRACELLULAR FIBER	154	3. ENZYME INHIBITION	213
Collagen polypeptides have an unusual composition and conformation	•	Irreversible inhibition	213
Collagen molecules are covalently cross-linked		Competitive inhibition is the most common form of reversible enzyme inhibition	
BOX 5-A Myosin mutations and deafness	146	Transition state analogs inhibit enzymes	

Glycogenolysis

Mixed inhibitors affect both $K_{\rm M}$ and $V_{\rm max}$ Allosteric inhibition		Many membrane proteins have limited mobility Membrane glycoproteins face the cell exterior	
Other ways to regulate enzyme activity		3 • MEMBRANE TRANSPORT	248
BOX 7-A Inhibitors of HIV enzymes	220	Ion movements alter membrane potential Overview of transporters Porins	
CHAPTER 8		Ion channels	
Biological Membranes	232	Gated channels undergo conformational changes Some transport proteins alternate	
1.THE LIPID BILAYER	233	between conformations Active transport	
Bilayers contain different kinds of lipids		4•MEMBRANE FUSION	259
The bilayer is a fluid structure		SNAREs link vesicle and plasma membranes	
Natural bilayers are asymmetric 2 • MEMBRANE PROTEINS	242	Membrane fusion requires changes in	
Integral membrane proteins span the bilayer		bilayer curvature	220
An α helix can cross the bilayer		BOX 8-A The lipid vitamins A, D, and K	239
The transmembrane β barrel Lipid-linked proteins are anchored in the membrane		BOX 8-B The ABO blood group system BOX 8-C Aquaporins are water-specific pores	247 254
1			
PART II METABOLIC REACTIONS			
CHAPTER 9		2•GLYCOLYSIS	308
Overview of Mammalian Metabolism		Reactions 1–5: energy investment	
and Free Energy	276	1. Hexokinase	
and free Linergy	_,0	2. Phosphoglucose isomerase	
1.FOOD, FUEL, AND ELECTRONS	277	3. Phosphofructokinase	
Cells take up the products of digestion		4. Aldolase	
Monomers are stored as polymers		5. Triose phosphate isomerase Reactions 6–10: energy payoff	
Fuels are mobilized as needed		6. Glyceraldehyde-3-phosphate	
The major catabolic pathways yield a few common intermediates		dehydrogenase	
Reduced cofactors		7. Phosphoglycerate kinase	
Looking at the big picture		8. Phosphoglycerate mutase	
Each organism has a unique metabolism		9. Enolase 10. Pyruvate kinase	
2 • FREE ENERGY CHANGES IN METABOLIC REACTIONS	289	The fate of pyruvate	
Free energy and concentration		3 • GLUCONEOGENESIS	324
ATP and coupled reactions		Pyruvate to phosphoenolpyruvate	
What's so special about ATP?		Phosphoenolpyruvate to fructose-1, 6-	
Other forms of energy currency		bisphosphate	
BOX 9-A Vitamins	288	Fructose-1,6-bisphosphate to glucose	
BOX 9-B Powering human muscles	295	Regulation of gluconeogenesis Glycogen synthesis	
CHAPTER 10		4. THE PENTOSE PHOSPHATE PATHWAY	330
Glucose Metabolism	302	The oxidative reactions of the pentose phosphate pathway	
1•GLUCOSE: WHENCE AND WHEREFORE Glucose residues are linked by glycosidic bonds	304	Isomerization and interconversion reactions of the pentose phosphate pathway	

5 • SUMMARY SOF GLUCOSE METABOLISM

335

BOX 10-A	Metabolism of other sugars	321	3 • CHEMIOSMOSIS	385
BOX 10-B	Alcohol metabolism	323	Chemiosmosis links electron transport and	
BOX 10-C	The synthesis of other saccharides	331	oxidative phosphorylation	
			The proton gradient is an electrochemical gradient	
			4 • ATP SYNTHASE	388
	44		The structure of ATP synthase	
CHAPTER	R 11		The binding change mechanism	
The Citri	ic Acid Cycle	342	Stoichiometric considerations of oxidative phosphorylation Regulation of oxidative phosphorylation	
1.THE PY	RUVATE DEHYDROGENASE COMPLEX			201
	TS PYRUVATE TO ACETYL-CoA	344	BOX 12-A Uncoupling agents prevent ATP synthesis	391
	ruvate dehydrogenase complex			
	tains multiple copies of three erent enzymes		CHAPTER 13	
	GHT REACTIONS OF THE CITRIC		Photosynthesis	398
ACID C		348	, ,	J /-
1. Citra	te synthase		1 • CHLOROPLASTS AND SOLAR ENERGY	400
2. Acor	nitase		How do plants absorb light?	
	trate dehydrogenase		Light-harvesting complexes	
	toglutarate dehydrogenase		2. THE LIGHT REACTIONS	404
	inyl-CoA synthetase		Photosystem II is a light-activated oxidation-	
	inate dehydrogenase		reduction enzyme	
7. Fuma	arase te dehydrogenase		The oxygen-evolving complex of Photosystem II oxidizes water	
	ric acid cycle is an energy-generating		Cytochrome $b_0 f$ links Photosystems I and II	
	lytic cycle		A second photooxidation occurs at Photosystem I	
The cit	ric acid cycle is regulated at three steps		Photophosphorylation: ATP synthesis	
Evoluti	on of the citric acid cycle		by chemiosmosis	
	TRIC ACID CYCLE IS BOTH		3 • CARBON FIXATION	413
	OLIC AND ANABOLIC	360	Rubisco catalyzes CO ₂ fixation	
	cid cycle intermediates are precursors of er molecules		The Calvin cycle	
	rotic reactions replenish citric acid		Regulation of carbon fixation	
	e intermediates		Carbohydrate synthesis	405
BOX 11-A	Asymmetry in the citric acid cycle	352	BOX 13-A Cryptochromes: animal photosensors	405
BOX 11-B	The glyoxylate cycle	363	BOX 13-B The C ₄ pathway	416
			CHAPTER 14	
CHAPTER	12		Lipid Metabolism	424
Oxidativ	e Phosphorylation	370	1 • FATTY ACID OXIDATION	427
			Fatty acids are "activated" before they are degraded	721
	ERMODYNAMICS OF	(a) table	β Oxidation: a pathway with four reactions	
	TION-REDUCTION REACTIONS	372	Energy yield of β oxidation	
	ion potential indicates a substance's lency to accept electrons		Oxidation of unsaturated fatty acids	
	es in reduction potential and free		Oxidation of odd-chain fatty acids	
	gy changes		Fatty acid oxidation in peroxisomes	
2.MITOC	HONDRIAL ELECTRON TRANSPORT	375	2 • FATTY ACID SYNTHESIS	437
	ondrial anatomy		The source of cytosolic acetyl-CoA	
	ex I transfers electrons from NADH biquinone		Acetyl-CoA carboxylase catalyzes the first step of fatty acid synthesis	
	oxidation reactions contribute to the		The reactions of fatty acid synthase	
Comple	quinol pool ex III transfers electrons from ubiquinol		Other enzymes elongate and desaturate newly synthesized fatty acids	
	ytochrome c		Regulation of fatty acid synthesis	
Comple	ex IV oxidizes cytochrome c and reduces O_2		Ketogenesis	

synthesized DNA

3.SYNTHESIS OF OTHER LIPIDS	446	The urea cycle consists of four reactions	
Triacylglycerol synthesis		Other mechanisms for nitrogen disposal	
Phospholipid synthesis		Urease breaks down urea	
Lipids as biological signals		BOX 15-A Nitric oxide	477
Cholesterol synthesis The fate of cholesterol		BOX 15-B Ribonucleotide reductase	482
	456	BOX 15-C Inborn errors of metabolism	488
4. SUMMARY OF LIPID METABOLISM	456		
BOX 14-A Fats, diet, and heart disease	441	CHAPTER 16	
BOX 14-B Triclosan, an inhibitor of fatty acid synthesis	444		
BOX 14-C Aspirin and other inhibitors		Regulation of Mammalian	
of cyclooxygenase	451	Fuel Metabolism	500
		1. WHY ARE REGULATORY SYSTEMS NEEDED?	501
CHAPTER 15		Interorgan pathways: the Cori cycle and the glucose–alanine cycle	
	462	Hormones coordinate metabolic functions	
Nitrogen Metabolism	402	2. THE ACTION OF INSULIN	504
1 • NITROGEN FIXATION AND ASSIMILATION	463	Pancreatic β cells release Insulin	301
Other sources of fixed nitrogen	403	Insulin binds to a specific receptor	
Assimilation of ammonia		Insulin alters metabolic processes	
2.TRANSAMINATION	466	Phosphorylation/dephosphorylation is a type of	
3.AMINO ACID BIOSYNTHESIS	467	allosteric regulation	1000000
Synthesis of nonessential amino acids		3. THE ACTION OF GLUCAGON	509
Synthesis of essential amino acids		G proteins are intracellular mediators	
4.AMINO ACIDS AS METABOLIC PRECURSORS	475	The adenylyl cyclase pathway G proteins participate in other	
Many neurotransmitters are amino		signaling pathways	
acid derivatives		4 • DIABETES, A DISORDER OF FUEL METABOLISM	517
Nucleotide biosynthesis		There are two main types of diabetes	
5 • AMINO ACID CATABOLISM	483	The metabolic effects of diabetes	
Amino acids are glucogenic, ketogenic, or both		BOX 16-A Olfaction	514
6•NITROGEN DISPOSAL: THE UREA CYCLE	487	BOX 16-B Anthrax	516
Glutamate supplies nitrogen to the urea cycle	194	BOX 16-C Obesity	520
PART III MANAGEMENT OF GENETIC INFOR	MATION		
CHAPTER 17		An RNase and a ligase are required to complete	
DNA Replication	530	the lagging strand 3•TELOMERES	543
		Telomerase extends chromosomes	545
1 • DNA TOPOLOGY	531	Is telomerase activity linked to	
Topoisomerases alter DNA supercoiling		cell immortality?	
2. THE PROTEINS OF DNA REPLICATION	535	4 • DNA PACKAGING	546
Replication occurs in factories		The fundamental unit of DNA packaging	
Helicases convert double-stranded DNA to single-stranded DNA		is the nucleosome	
DNA polymerase faces two problems		Histones are covalently modified	
DNA polymerases share a common		DNA also undergoes covalent modification	
structure and mechanism		BOX 17-A HIV and Reverse Transcriptase	545
DNA polymerase proofreads newly			

BOX 17-B X Chromosome inactivation

550

CHAPTER 18		3•RNA PROCESSING	598
Cancer and DNA Repair	556	5' capping 3' polyadenylation	
1. WHAT IS CANCER? Cancer is a genetic disease Multiple defects contribute to cancer	557	Splicing mRNA turnover rRNA and tRNA processing	
	F / 1	4 • RNA: A VERSATILE MACROMOLECULE	604
2. DNA DAMAGE AND REPAIR DNA can be damaged in different ways Repair enzymes restore damaged DNA Base excision repair corrects the most frequent DNA lesions	561	BOX 19-A DNA binding proteins BOX 19-B The <i>lac</i> operon BOX 19-C RNA interference	590 592 602
Nucleotide excision repair targets the second most common form of DNA damage		CHAPTER 20	
Some damage can be repaired through recombination		Protein Synthesis	612
3•CELL CYCLE CONTROL Some members of the DNA-damage checkpoint pathway have been identified p53 plays a central role in cancer	571	1•tRNA AMINOACYLATION Aminoacylation consumes ATP Some AARSs have proofreading activity Reading the genetic code	614
BOX 18-A Gene expression profiling of cancers	560	2. RIBOSOME STRUCTURE	618
BOX 18-B Apoptosis CHAPTER 19	572	3•TRANSLATION Initiation requires an initiator tRNA Elongation begins with tRNA binding Peptidyl transferase catalyzes peptide bond formation	621
Transcription and RNA	580	Translation termination	
		4 • POSTTRANSLATIONAL EVENTS	631
1•TRANSCRIPTION INITIATION Transcription begins at promoters Transcription factors recognize eukaryotic promoters Enhancers and silencers act at a distance from the promoter Some genes are coordinately expressed	583	Chaperones assist protein folding The signal recognition particle targets some proteins for membrane translocation Posttranslational modifications Protein turnover BOX 20-A Antibiotic inhibitors of protein synthesis	626
2•RNA POLYMERASE	591	2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
RNA polymerase is a processive enzyme What allows RNA polymerase to elongate a transcript?		Glossary Solutions	643 661
		Index	743