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Preface

Bce cuacrausbie ceMby MOXOMKHA Apyr Ha
Opyra, Kaxjgada HecyacranBaa CeMbd
HecyacCTInuBa l'IO--CBOGMy.1

Jles Toncroii, Auna Kapenuna (1875)

While it is not strictly speaking true that all linear partial differential
equations are the same, the theory that encompasses these equations can
be considered well developed (and these are the happy families). Large
classes of linear partial differential equations can be studied using linear
functional analysis, which was developed in part as a tool to investigate
important linear differential equations.

In contrast to the well-understood (and well-studied) classes of linear
partial differential equations, each nonlinear equation presents its own
particular difficulties. Nevertheless, over the last forty years some rather
general classes of nonlinear partial differential equations have been stud-
ied and at least partly understood. These include the theory of viscosity
solutions for Hamilton—Jacobi equations, the theory of Korteweg—de Vries
equations, as well as the theory of hyperbolic conservation laws.

The purpose of this book is to present the modern theory of hyperbolic
conservation laws in a largely self-contained manner. In contrast to the
modern theory of linear partial differential equations, the mathematician

LAll happy families resemble one another, but each unhappy family is unhappy in its
own way (Leo Tolstoy, Anna Karenina).



X Preface

interested in nonlinear hyperbolic conservation laws does not have to cover
a large body of general theory to understand the results. Therefore, to
follow the presentation in this book (with some minor exceptions), the
reader does not have to be familiar with many complicated function spaces,
nor does he or she have to know much theory of linear partial differential
equations.

The methods used in this book are almost exclusively constructive, and
largely based on the front-tracking construction. We feel that this gives the
reader an intuitive feeling for the nonlinear phenomena that are described
by conservation laws. In addition, front tracking is a viable numerical
tool, and our book is also suitable for practical scientists interested in
computations.

We focus on scalar conservation laws in several space dimensions and
systems of hyperbolic conservation laws in one space dimension. In the
scalar case we first discuss the one-dimensional case before we consider
its multidimensional generalization. Multidimensional systems will not be
treated. For multidimensional equations we combine front tracking with the
method of dimensional splitting. We have included a chapter on standard
difference methods that provides a brief introduction to the fundamentals
of difference methods for conservation laws.

This book has grown out of courses we have given over some years:
full-semester courses at the Norwegian University of Science and Technol-
ogy and the University of Oslo, as well as shorter courses at Universitit
Kaiserslautern and S.I.S.S.A., Trieste.

We have taught this material for graduate and advanced undergraduate
students. A solid background in real analysis and integration theory is
an advantage, but key results concerning compactness and functions of
bounded variation are proved in Appendix A.

Our main audience consists of students and researchers interested
in analytical properties as well as nurmerical techniques for hyperbolic
conservation laws.

We have benefited from the kind advice and careful proofreading of var-
ious versions of this manuscript by several friends and colleagues, among
them Petter 1. Gustafson, Runar Holdahl, Helge Kristian Jenssen, Kenneth
H. Karlsen, Odd Kolbjgrnsen, Kjetil Magnus Larsen, Knut-Andreas Lie,
Achim Schroll. Special thanks are due to Harald Hanche-Olsen, who has
helped us on several occasions with both mathematical and TgX-nical is-
sues. We are also grateful to Trond Iden, from Ordkommisjonen, for helping
with technical issues and software for making the figures.

Our research has been supported in part by the BeMatA program of the
Research Council of Norway.

A list of corrections can be found at

www.math.ntnu.no/ holden/FrontBook/

Whenever you find an error, please send us an email about it.



Preface xi

The logical interdependence of the material in this book is depicted in the
diagram below. The main line, Chapters 1, 2, 5-7, has most of the emphasis
on the theory for systems of conservation laws in one space dimension. An-
other possible track is Chapters 1-4, with emphasis on numerical methods
and theory for scalar equations in one and several space dimensions.

Chapter 1

Chapter 2 Sections 3.1-2 Sections 3.34

@)t_eT_Sl Chapter 4

Chapter 7
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1

Introduction

| have no objection to the use of the term “Burgers’
equation” for the nonlinear heat equation
(provided it is not written “Burger’s equation”).

Letter from Burgers to Batchelor (1968)

Hyperbolic conservation laws are partial differential equations of the form

Ou

Gt + V- f(u)=0.
If we write [ = (f1,.-., fm)y € = (®1,%2,...,2rm) € R™, and introduce
initial data ug at ¢t = 0, the Cauchy problem for hyperbolic conservation
laws reads

Oulz

1) e D
TJF;B—%fj(u(m,t)):o, uli=o = to- (1.1)

In applications ¢ normally denotes the time variable, while x describes the
spatial variation in m space dimensions. The unknown function u (as well
as each f;) can be a vector, in which case we say that we have a system of
equations, or v and each f; can be a scalar. This book covers the theory of
scalar conservation laws in several space dimensions as well as the theory
of systems of hyperbolic conservation laws in one space dimension. In the
present chapter we study the one-dimensional scalar case to highlight some
of the fundamental issues in the theory of conservation laws.



2 1. Introduction

We use subscripts to denote partial derivatives, i.e., u;(x,t) = du(z.t)/0t.
Hence we may write (1.1) when . =1 as

u+ f(u)e =0, ulimo = uo. (1.2)

If we formally integrate equation (1.2) between two points 1 and xa, we
obtain

il g
| wdr == [ e = 1w 0) - F ).
X1 &1
Assuming that u is sufficiently regular to allow us to take the derivative
outside the integral, we get

d [*2

E u(ac,t) dr = f (u (:Elvt)) - f (u ($25 f)) : (13)

This equation expresses conservation of the quantity measured by u in the
sense that the rate of change in the amount of u between x; and z5 is given
by the difference in f(u) evaluated at these points.! Therefore, it is natural
to interpret f(u) as the flur density of u. Often, f(u) is referred to as the
fluz function.

As a simple example of a conservation law, consider a one-dimensional
medium consisting of noninteracting particles, or material points, identi-
fied by their coordinates y along a line. Let ¢(y,t) denote the position of
material point y at a time t. The velocity and the acceleration of y at time
t are given by ¢;(y,t) and ¢ (y,t), respectively. Assume that for each t,
@(-,t) is strictly increasing, so that two distinct material points cannot
occupy the same location at the same time. Then the function ¢(-,t) has
an inverse (- ,t), so that y = ¥(¢(y,t),t) for all t. Hence = = ¢(y,1) is
equivalent to y = ¥ (x,t). Now let u denote the velocity of the material
point occupying position « at time ¢, i.e., u(x,t) = ¢ {(¥{z,1),t), or equiv-
alently, u(é(y,t),t) = ¢:(y,t). Then the acceleration of material point y at
time ¢ is

(ptt (y7 t) = Ut(¢(3/, t)v t) -+ um(¢(y7 t)7 t)¢t (y, t)
= w(x, 1) + ug(x, Hulx, t).

If the material particles are noninteracting, so that they exert no force on
each other, and there is no external force acting on them, then Newton’s
second law requires the acceleration to be zero, giving

up + <%u2)x =0. (1.4)

'In physics one normally describes conservation of a quantity in integral form, that
is, one starts with (1.3). The differential equation (1.2) then follows under additional
regularity conditions on u.
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The last equation, (1.4}, is a conservation law; it expresses that u is con-
served with a flux density given by u?/2. This equation is often referred to
as the Burgers equation without viscosity,? and is in some sense the simplest
nonlinear conservation law.

Burgers’ equation, and indeed any conservation law, is an example of a
quasilinear equation, meaning that the highest derivatives occur linearly. A
general inhomogeneous quasilinear equation for functions of two variables
x and ¢ can be written

a(z, b, u)uy + bz, t,w)u, = c(x, t,u). (1.5)

We may consider the solution as the surface {(¢,z,u(z.t))|(t,z) € R*} in
R3, Let T be a given curve in R? (which one may think of as the initial data
if ¢ is constant) parameterized by (t(n), (), 2(n)). We want to construct a
surface S C R3 parameterized by (¢, 7, u(x, t)) such that u = u(z, t) satisfies
(1.5) and I" € S. To this end we solve the system of ordinary differential
equations

ot Ox 0z
a—gza, 8—€:b, a—g = C, (16)
with
t(€.n) =tm), z(&o,n)=xz(n), =z(&.n)=zn) (1.7)
t=t

Assume that we can invert the relations z = z(¢, 1), (&,n) and write

& =&z, t), n =n(z,t). Then
u('T’vt) = Z(f(xat)777($vt)) <1.8)

satisfies both (1.5) and the condition I' C S. However, there are many ifs
in the above construction: The solution may only be local, and we may not
be able to invert the solution of the differential equation to express (£,7n)
as functions of (z,t). These problems are intrinsic to equations of this type
and will be discussed at length.

Equation (1.6) is called the characleristic equation, and its solutions are
called characteristics. This can sometimes be used to find explicit solutions
of conservation laws. In the homogeneous case, that is, when ¢ = 0, the
solution u is constant along characteristics, namely,

d—fu(:c(f,n),t(f,n)) = UypTe + Upte = ugb + uga = 0. (1.9)

$ Example 1.1.

Define the (quasi)linear equation

uy — TUy = —2u, u{x,0) =z,

2Henceforth we will adhere to common practice and call it the inviscid Burgers’
equation.
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with associated characteristic equations

ot ] oz 3 Oz

A A

The general solution of the characteristic equations reads

—2z.

t=to+€& x==x0e 5, z=zpc %

Parameterizing the initial data for E =0by t =0, 2 =7, and z = 7, we
obtain

t=¢ z=net, z=ne %,

which can be inverted to yield

u=u(z,t) = z2(£&,n) = ze L.

¢
{ Example 1.2.
Consider the (quasi)linear equation
zur — t2uy = 0. (1.10)
Its associated characteristic equation is
ot ox 9
==z, = =-t
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This has solutions given implicitly by x2?/2 + ¢3/3 = const, since after
all, (x?/2 + t3/3)/0¢ = 0, so the solution of (1.10) is any function
of 22/2 +13/3, i.e., u(x,t) = p(x?/2 + t3/3). For example, if we wish to
solve the initial value problem u(z,0) = sin |z|, then u(z, 0) = (2?2 /2) =
sin |z|. Consequently, ¢(z) = sin v/2z, and the solution u is given by

w(x,t) =sin\/z? + 2t3/3, t>0.

¢ Example 1.3 (Burgers’ equation).

If we apply this technique to Burgers’ equation (1.4) with initial data
u(z,0) = ug(z), we get that

at Oz 0z

— =1, — =z, d —==0

G a¢ z, an o€
with initial conditions t(0,7) = 0, 2(0,n) = 7, and z(0,n) = wue(n).
We cannot solve these equations without knowing more about ug, but
since u (or z) is constant along characteristics, cf. (1.9), we see that



