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Preface

This book is an introduction to discrete linear controls. It is written for
those engineers, operations researchers, and systems analysts involved with
the design, analysis, and operation of discrete-time decision processes. The
basic theory is developed directly from the underlying discrete mathematics
in an effort to provide the user with an understanding of the nature of discrete
controls and equip him in as simple and straightforward a manner as possible
with the necessary tools and techniques to deal with such systems.

This approach is somewhat rare in the current control theory literature,
in which the theory of discrete controls is developed as an extension of the
theory of continuous systems and usually in the context of electromechanical
circuits.t For those whose interests lie in the areas of conceptual models of
various discrete man-machine systems or the automation of inherently dis-
crete production processes, the presentation here precludes the necessity of
devoting time and energy to the learning of classical continuous controls in
order to eventually gain the material they need. This is not to say that the
continuous theory learned might not be useful, especially if the processes
involved do have continuous features in their operation, but for many pur-
poses discrete-systems theory will fully suffice. Furthermore, as computer
control of manufacturing processes continues to advance and as quantitative
analysis and optimal design of an ever-widening variety of societal and
ecological systems involving human decision makers emerges, the appro-
priateness of discrete models and hence the need for ready access to the
methodology of discrete control systems is rapidly increasing.

As in most subjects, the more extensive the background, both analytical
and empirical, that the reader brings to his study of the material herein, the
greater his potential for not only gaining a basic understanding of the material
presented but also extending it in innovative ways. Throughout the study of
the text, the reader is encouraged to question and explore, to develop more
realistic or effective models, and to devise new approaches to the derivation
and manipulation of models and the simplification of calculation procedures.
Above all, he should be continually searching his field of experience for areas
of application. It has been assumed in preparing the text, however, that the

t See, for example, Digital and Sampled Data Control Systems by J. T. Tou (1959, see
reference list for detailed information) or Discrete-Time and Computer Control Systems by
J. A. Cadzow and H. R. Martens (1970). The latter develops discrete control theory with
a minimum of dependence on continuous system theory. A recent book devoted completely
to discrete theory, and hence an exception to the point being made here is Discrete-Time
Systems by J. A, Cadzow (1973).
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reader will have a background in both differential and integral calculus and
be familiar with the basic concepts of classical optimization theory for an-
alytical functions. Although numerous opportunities exist for applying a
variety of alternative optimization techniques, these are either mentioned in
passing or left entirely to the reader. Sufficient knowledge of probability
theory for the reader to be familiar with basic definitions, notions of in-
dependence, moments, joint moments, and common distributions is assumed,
although much of this material is reviewed briefly in the context of its usage
in the text. On the other hand, no particular knowledge of discrete math-
ematics is assumed. The calculus of finite differences and solution procedures
for linear difference equations with constant coefficients is covered in detail
in Chapters III-VI. In addition, only a cursory familiarity with the notions
of limits is assumed. This is in spite of the fact that the applicability of the z
transform depends on the convergence of an infinite sum, the conditions for
which we state and then assume hold from there on. No background whatso-
ever in control theory is assumed.

The book provides a series of building blocks upon which one can formu-
late models and devise analysis and design exercises which can extend the
coverage in the text to best suit the background and interest of the teacher
and students. Specifically, Chapter I is a basic introduction to systems analy-
sis, discrete systems, the concept of control, and the role of models in system
analysis and design. In Chapter II the development of system difference
equations is illustrated with respect to a generalized discrete-process control
system, a production—-inventory control system, and a simplified flow analysis
of the criminal justice system. Chapter III introduces some concepts from
the calculus of finite differences useful in the formulation and solution of
difference equations. Solution of linear difference equations with constant
coefficients by classical means is discussed in Chapter IV. Chapter V intro-
duces the z transform as a more flexible approach to the formulation and
solution of linear difference equations, and Chapter VI presents the inverse
transformation. In Chapter VII criteria for evaluating system performance
are discussed. This is followed by examining the performance of a simplified
first-order process control system when perturbed by each of several types of
common system disturbances. This performance evaluation is extended in
Chapter VIII to include the effects of measurement and sampling errors and
a series of examples is presented to illustrate the selection of an optimal value
for the control system parameter for each of several types of disturbance
given several possible performance criteria. Chapter IX is devoted entirely to
system stability and tests to determine the conditions under which a system
will operate stably. The properties and performance of several types of second-
order system are presented in Chapter X. Emphasis is given to the analysis
of the ranges of parameters for stable operation and the interrelationships
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between these parameter values and the effects of random measurement errors.
Chapter XI considers extensions to higher order systems. The signal-flow
graph is introduced here as a convenient means of representing and manipu-
lating complex systems. Effects of delay in sensing and feeding back informa-
tion for decision-making purposes is included among several miscellaneous
concluding topics.

The exercises at the end of each chapter are designed to extend the
material presented in the text. Each chapter has several drill-type problems
to test understanding of each new topic and technique from that chapter.
Many of these are presented sequentially so that a course instructor will
always have some problems he can assign upon completion of each section or
subsection. As new steps in problem solution are covered in the text, exer-
cises are available to apply that step to the results of previously completed
steps. Other exercises provide opportunity for additional study of systems or
techniques or require verification of expressions presented in the text with
only partial or no derivation. Others force attention to new formulations or
areas of application. A few might be considered minor topics for research.
Because of the building-block nature of these exercises, there are numerous
cross references among them. Difference equation models developed in exer-
cises in Chapter II are solved in several stages by classical means in exercises
in Chapter IV and by the z transform in Chapters V and VI. System perfor-
mance under a variety of environmental conditions is evaluated in exercises in
Chapters VII, VIII, or X and stability established in exercises in Chapter IX.
It is hoped that the familiarity the reader gains with a few specific systems in
this way will permit concentration on each new topic as it is introduced with-
out having to feel out a new system structure at every turn.
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Chapter | Systems Theory and Discrete Linear
Control Systems

The discrete, linear, time-invariant system has in recent years become an
object of increasing interest in many areas. Much of this attention has come
from operations researchers and systems analysts involved with either human
decision makers who tend to make specific, individually identifiable decisions
or digital or time-shared system components whose information outputs
occur periodically. Furthermore, because of the relative simplicity of mathe-
matical models of such systems, beneficial insights can often be gained by
modeling a wide variety of systems as though they were discrete, linear, and
time invariant.

In this first chapter we introduce the concept of a system and then define
the basic terms of discreteness, etc., in the context of a system. The notion of
control and the components and structure of a control system are then
examined. The chapter closes with a discussion of models and their role in
system analysis and design.

1.1 Systems Theory

The 1950s saw the rise of ““operations research’ with its emphasis on
finding optimal solutions to operational problems (Churchman et al., 1957).
An oft-stated feature of OR methodology is a ““systems approach,” which
basically means that the researcher should carefully strive to consider all
those factors which are likely to have a reasonably significant effect on the
solution of the problem. For example, the routing and scheduling of trucks
among terminals of a common carrier cannot be done properly without
consideration of the company’s truck maintenance program and the materials

1



2 I SYSTEMS THEORY AND DISCRETE LINEAR CONTROL SYSTEMS

handling capability at the loading docks. Aircraft instruments and controls
have to be designed with both the motor skills and the information processing
capacity of the pilot explicitly in mind. Of particular importance to the
industrial engineer, the layout of single work stations has had to give way to
production line design involving not only production but also materials
handling and storage.

With the systems approach came the compiling of lists of *“ pertinent ”’
factors as one of the first steps in any problem-solving effort. To staff a tool
crib one needs to know the types and numbers of tools handled, the frequency
of requests for each type by time of day and week, and the service-time distri-
butions. An added frill might be the interference patterns that result from the
presence of more than one attendant. Further study usually produces additions
and deletions from the list and some understanding of the interrelationships
among the items listed. This identification of items to include in the system
and the descriptions of their interrelationships is termed model building. The
description itself is the model, which serves both as a source of learning and
insight and as a vehicle to optimize system structure and performance.

In order to obtain or even define an optimum solution to a problem, the
problem-solver needs a criterion of optimality and a scale on which to
evaluate competing solutions. In industrial settings one usually seeks to
maximize profit or to minimize cost, although surrogate measures involving
product quality, adherence to deadlines, and customer service, all of which
contribute to profit in complex ways, are often used. The trucking company
may attempt to minimize delivery time or damage to freight. The industrial
engineer could attempt to maximize throughput or minimize the bank sizes
of his production line. Elsewhere, particularly in the public sector, benefit
or effectiveness often share the spotlight or even replace profit and cost as
the basis of evaluation. Both cost and performance must be explicitly con-
sidered by the designer of an interceptor missile system, where performance
could involve maximizing the probability of intercept or minimizing the
damage inflicted by an attack force. The aircraft cockpit designer, however, is
essentially completely interested in flight safety with equipment cost involved
only as a constraint, if at all.

The systems approach of the operations researcher has undergone con-
siderable extension and formalization in recent years resulting in what many
refer to today as systems theory. The history of this evolution and discussions
of the principal current formulations are presented by Klir (1972). Brockett
(1970) presents an engineering oriented discussion of linear systems, and
Howard provides extensive coverage of dynamic probabilistic systems in his
two-volume set divided into Markov (1971a) and semi-Markov and decision
processes (1971b). In this book we will be extensively involved with the
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systems approach of model building, criterion formulation, and optimization
of performance of discrete linear decision systems, referred to here as control
systems. This is the type of system of particular interest to the manager,
public official, operations researcher, and design engineer. We will draw
heavily on available systems theory, but only to the extent necessary to
motivate, derive, and explain the points being developed. The reader is
referred to the sources listed above for further discussion of systems theory.

Because of our primary interest in discrete systems, a discussion of what
is meant by “discrete,” ““discrete system,” and other terms basic to our
exposition is in order at this point. We will then turn our attention to control
theory and introduce the concept of a decision or control system. The
chapter concludes with a general discussion of models and their role in
systems analysis and design.

1.2 Discrete Systems

A discrete event is a specific happening readily distinguishable from other
events. Examples include the inauguration of a president, the opening of a
supermarket, the dispatching of a bus, or the completion of the manufacture
of the ith engine block in a production run. Often, however, the discrete
character of an event is a matter of definition. For example, the flow of water
through a hydroelectric station is, under normal operating conditions, a
continuous phenomenon. Yet one could define as a discrete event the passing
of the one-billionth gallon through the station. Similarly, the height of water
in a reservoir is a continuous variable. Yet it can be discretized by measuring
to the nearest foot only and attaching an integer (discrete) measure to the
level. Time is often described in discrete terms such as the number of days to
repay a loan. It may also frequently be expressed in units corresponding to
the occurrence of a sequence of discrete events. For example, time i could
be defined as the time at which the ith engine block is completed or as the
end of the ith week in a production control plan in which factory schedules
are issued weekly. Obviously, to convert to clock or calendar time, i must be
multiplied by the time between events and the result added to the time corre-
sponding to the origin of the sequence.

As used herein a discrete system is one whose output occurs naturally on
a discretized time scale, often referred to as discrete time. The engine-block
manufacturing line is a good example. It is obviously not meant that the line
exists or operates only at those instances at which a block is finished, but that
the meaningful descriptors of the operation of the line are, for the most part,
the characteristics of the block produced. Since each succeeding set of such
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characteristics is attached to succeeding engine blocks, it can also be ascribed
to the discrete points in time at which the blocks are completed. When
described in this way, the engine-block line is a discrete system.

The discreteness of the process output, however, is not the only factor
which determines the discreteness of a system. A Fourdrinier machine produces
paper in a continuous sheet. The quality characteristics such as density and
moisture content are determined, however, by moving a gage across the
bed of the machine. At the completion of a scan, the gage signals are analyzed
and a discrete-control action initiated to adjust for any noted deviations from
standard. Thus the control of this continuous product is accomplished by a
discrete-control system. Similarly, a central computer which sequentially
monitors a number of processes on a time-shared basis supplies each unit in
turn with a discrete-control signal regardless of the nature of the processes
or their outputs.

In summary, the term discrete system refers in this book to any system
whose operation or output is conveniently described on a discrete time scale;
although, in general, the system characteristics, such as the height of an
individual engine block, are given continuous measures. Many authors prefer
the term *discrete-time system,” which is really a more apt description of
what is meant. In general, the index i is used to refer to discrete time. As
stated previously, i is related to continuous time ¢ by the relationship

i=1/T, i integer, (1.2.1)

where T is the time between events. Usually, functions of discrete time are
written simply in terms of the argument i, e. g., /(i) ,with T suppressed. How-
ever, where real-time considerations are important, conversion from f@) to
g(2), the comparable function in real time, is accomplished simply by substi-
tution of #/T for i in f(i). For example, the function of discrete time

f() =3i* +2i
can be expressed in terms of continuous time 7 as
g(t)=%t2 + %r.
For T =2,
g9(1) = 0.75¢* + ¢.
Conversely, for
g(t)y =13 + 3t
and T =2,
f(i) = 8i3 + 6i.
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Two additional properties which will usually be assumed for the systems
discussed herein will now be defined. These are the properties of ““linearity ”’
and “time invariance.”” The reader is referred to the work of Howard (1971a,
Chapter 2) for a complete and well presented treatment of the theory of
discrete, linear, time-invariant systems.

Linearity

As is well known to engineers, analysts, and operations researchers, a
linear relationship between a dependent variable and a group of independent
variables is one which can be expressed as a linear surface, i.e., as a line, plane,
or hyperplane. If it requires 1.5 minutes to test a circuit board regardless of
whether it is the first, seventeenth, or whichever number tested during a
production run, the time ¢ required for the test can be expressed as
t=) %=1 1.5=1.5n, where n is the number of circuit boards in the current
batch. This equation is, of course, the equation for a straight line passing
through the origin, and we say that the total test time is a linear function of
the number of items to be tested. Similarly, if the direct cost to manufacture
one unit of product of type k is ¢, regardless of how many items of that type
have already been produced and what types and how many of other kinds of
items are being made, total production cost C can be expressed as

C=co+) an, (1.2.2)
k

where 7, is the number of units of product type & manufactured and Co
represents fixed costs. Equation (1.2.2) is the equation of a hyperplane, a
linear surface, with cost-axis intercept Co-

To extend the notion of linearity to discrete systems, consider Fig. 1.2.1.

Discrete
FIG. 1.2.1. Discrete system with input r and output ¢. ¥ — 5| system ——» ¢

()

r and ¢ are vectors of discrete-time inputs and outputs, respectively, and are
often referred to as input and output signals. S represents the transformation
performed by the discrete system on the input to produce the output. It is
often referred to as the system operator. Specifically, using i as the index of
discrete time,

r={r(0), r(l), ..., r(i), ...},
¢ ={c(0), ¢(1), ..., c(i), ...},

¢ =8(r).

and



