COMPUTER
ORGANIZATION
AND THE MC68000

Prentice-Hall International Editions

- PANOS E. LIVADAS
CHRISTOPHER WARD

Computer Organization

and the MC68000

Panos E. Livadas
University of Florida

Christopher Ward
Auburn University

Prentice-Hall International, Inc.

This edition may be sold only in those countries to which
it is consigned by Prentice-Hall International. Itis notto
be re-exported and it is not for sale in the U.S.A., Mexico,
or Canada

= © 1993 by Prentice-Hall, Inc,
= A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their effectiveness. The
authors and publisher make no watrranty of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book. The authors and publisher shall not be liable in any event for incidental
or consequential damages in connection with, or arising out of, the fumishing, performance, or use of these
programs.

Printed in the United States of America

10 98 76 543 21

ISBN 0-13-17571.2-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Preface

BASIC RATIONALE

In the past, the subjects of computer organization and assembly language programming have
been taught as separate entities. This decision has been justified based on the observation
that the computer science discipline itself has evolved rapidly from hardware and
beyond. Thus, it was natural that during the 1970s and early 1980s computer scientists
were expected to be thoroughly familiar with the internal organization of a computer and be
proficient assembly language programmers. As computer science continues to grow, a
wealth of new material has appeared in high-level software developments. Current trends
in this arena may be found in window management software, computer aided software
engineering tools, and networked applications. This abundance of new material clearly
places pressure on the computer science curriculum with the result that the lower levels are
squeezed. Often this results in material at the lower levels being dropped from the curricu-
lum. This is quite appropriate, to a point. We believe, however, that some introduction to
both the areas of computer organization and assembly language programming are essential
to all computer science students. Computer organization enables computer scientists to talk
intelligently about computers with engineers and appreciate the limitations imposed by
conventional computers; likewise, assembly language programming is necessary for com-
puter scientists to visualize the relationship between higher-level programming and the
computer.

With these observations in mind, we have composed a single text that provides a
thorough, yet brief, introduction to both computer organization and assembly language pro-
gramming. In doing this, our goal was to effectively reduce two separate courses into one.
We have attempted to harmonize the two topics by using a particular architecture, the
MC68000, as a model for the hardware aspects of the text as well as the programming

XV

component. We note at the outset that to provide a hardware realization of the MC68000 is
quite beyond the scope of this introductory text. Instead, a subset referred to as SIM68 is
used to demonstrate how a computer might be designed using register-level components,
and this subset is also used to introduce MC68000 assembly language programming.
Although this coupling is not perfect, it does provide students with the necessary insight
that we seek. In achieving this goal, the task of teaching a combined course can become
difficult; these issues are addressed in later paragraphs. In writing this introductory text-
book we have attempted to address the following issues:

1. Suitability for classroom use and self-instruction. An introductory text in any sub-
ject is primarily intended for novices; therefore, it must be their first, not last, book on the
subject. As a first book, it must present the topics in a complete and “detailed” fashion;
issues that may seem “trivial” to the experts are not so to novices. This obviously should
not be accomplished at the expense of an accurate and thorough treatment of the subject.

With such an approach the book becomes lengthy, but the responsibility of the
instructor is to navigate the student through the book; therefore, he or she may cover what
seems appropriate. In addition, computer science is no longer a bag of tricks; it has
evolved into a highly technological science. Therefore, instruction should not terminate
with the end of class. We hope that this text will help the student clarify and understand the
answers to the “trivial” issues that may not be presented during classroom time.

2. Study of computer organization. The principal difficulty associated with many text-
books using the title Computer Organization is that they are not targeted at an introductory
level. There are many texts suitable for students with a broad knowledge of the area.
These texts implicitly assume that students are familiar with arithmetic in different bases,
the concepts of bytes, bits and word alignment, and the principal components of a com-
puter. Often, however, this is not the case. Typically students at an early stage have had
only high-level programming experience, or less! It is to these students that this course is
directed. Another problem with current computer organization texts is that although
machine code and assembly language programming are introduced, it is in a highly artifi-
cial context. Texts frequently assume that the material will be covered elsewhere (i.e., in
an assembly language programming course) and cover the concepts far too quickly for stu-
dents without experience to grasp.

This book discusses computer organization at several levels thereby permitting differ-
ent issues to be offered to different people. In particular, note the following topics that are
presented:

a, Gate level. For students that have had previous exposure to introductory engineering
the text discusses several transistor technologies used today. The purpose is to
demonstrate that the mechanism underlying modern computers may be traced from
the most abstract level down to the materials level. There was some deliberation
whether the text should include an introduction to VLSI techniques; however, even
though this material is quite interesting, it will add no essential detail to concepts
already presented.

b. Register level. Although the gate level is provided, it is expected that in general the
starting point for this course from the computer organization text perspective will be

xvi Preface

C.

at the register level. In this text, as with several others, we introduce the building
blocks of the computer. We have organized the material so that students with no
experience in this arena should be able to follow the presentation without difficulty.
We have included sufficient material for students to design new register level compo-
nents using those provided as building blocks.

System level. Tt is at the system level that we have merged the components of com-
puter organization and assembly programming. As we shall see shortly, SIM68 is
introduced as an abstract model for assembly programming. However, in the sections
where computer organization is discussed, we show how portions of such an abstract
computer could be realized using only the components discussed in earlier sections.
We use SIM68 as an example to design a simple central processing unit (CPU). Dur-
ing this phase, we further introduce the notion of clocked sequential control and
microprogramming. Because students will already be familiar with SIM68, there is a
greater appreciation of the material covered.

Network level. We have extended the computer organization into networked comput-
ers with a discussion of the devices used to connect computers and some broader
issues of networking in general. We have used the ISO/OSI model to explain the dif-
ficulties that must be overcome when networking computers; we have also provided
an example network application using Internet. We consider this to be the highest
level of computer organization.

3. Study of assembly language programming. A similar criticism may be leveled at

most texts on assembly language programming as was discussed for computer organization.
That is, they assume a greater breath of knowledge than the students possess. Specifically
texts will frequently discuss device control and interrupts in later chapters without describ-
ing the relationship between these components and the rest of the system (i.e., they assume
a computer organization course). There was also an emphasis during the 1980s on explain-
ing how high-level programs are supported at the assembly language level using frames,
modules, and so on. Although this is useful to some degree, the current trend toward sim-
pler instruction sets (i.e., the RISC architectures) suggests that such support is unnecessary
at the processor level. With these comments in mind, we note the following topics covered
in assembly language programming:

a.

Computer system basics. The material presented early in the text is common to both
computer organization and assembly programming. In these sections we have
attempted to explain how to manipulate numbers in different bases; an overview of a
computer system, how data, code, and instructions are represented in a computer, and
notions such as a byte of storage and word alignment are some of the subjects pre-
sented. The material is expressly written to be easily understood by novices.

Simple programmers model—SIM68. Assembly language programming is introduced
using a simple subset of the Motorola MC68000 instruction set known as SIM68.
The programmer’s model contains sufficient detail to permit students to write pro-
grams using the SIM68, which may be demonstrated using the SIM68 simulator
freely available from the authors. Through use of SIM68, many of the concepts asso-
ciated with both machine code organization and assembly language programming

Preface xvii

may be discussed without the complexities inherent in the full MC68000 model. In
addition to the programming aspect of SIM68, the computer architecture sections use
the same instruction set to demonstrate how, using components already defined,
SIM68 could be realized in hardware. This coupling provides additional interest for
both computer organization and assembly language programming.

¢. Programming on the MC68000. Once SIM68 has been introduced, it becomes an
easy transition to move to the MC68000. Students have already had exposure to dif-
ferent addressing modes and instruction types via SIM68. The MC68000 is simply
an extension of these concepts (albeit a large extension). Later in the text we also
introduce the notion of subroutines, the frame concept, and exception processing.
The latter issue clearly ties into computer organization.

d. Controlling devices. An excellent demonstration of reasons why we have coupled
computer organization and assembly language programming may be observed in the
sections on device control. We present these devices from the programmers perspec-
tive; however, the diagrams of the devices and a notion of how they could be imple-
mented will be carried by the students from the organization section.

This book is the outgrowth of four years of class notes and lectures, and has been
designed primarily for a course in computer science to address the more elementary issues
in computer architecture as described by Peter Denning et al. in “Computing as a Disci-
pline,” Communications of the ACM, vol. 32, no. 1, January 1989, pp. 9-23. The text does
not break new ground; it does, however, permit the entire lower-level material in architec-
ture and assembler programming to be taught from a single text, in either one or two
semesters depending on the material covered.

ORGANIZATION OF THIS BOOK

Chapter 1 serves as an introduction to the topics that are covered in the later chapters of the
book. First we identify, by means of examples, the issues involved in computer organiza-
tion. We then proceed to present the basic foundation of computer system material as the
three “onions” that correspond to the hardware, software, and user views. It is the combina-
tion of these views around which the remaining text is based.

Chapter 2 contains the “foundations” for the remaining chapters and includes the fol-
lowing sections:

1. Number systems. A thorough discussion is given, including addition, subtraction,
multiplication, and division in different bases and one’s complement, two’s comple-
ment, and sign-magnitude representations.

2. Boolean logic. This section includes boolean algebra, operator representations, nor-
mal forms, and expression simplification using Karnaugh maps.

3. Gate implementation. This provides information regarding how gates are imple-
mented in different technologies and includes the characteristics of different tech-
nologies and packing methods.

xViii Preface

4. Clocks and timing issues. This introduces the notion of a clock and why one is nec-
essary.

5. Combinational and sequential circuits. This section includes all the components
used later in the hardware design of SIM68.

The material covered in Chapter 2 will be determined by the student’s previous expo-
sure. In the interest of completeness, however, we have included everything that we think
is necessary to teach the remaining material.

Chapter 3 discusses the principal components of a computer system. It is written
so that it may be taught without reference to the hardware considerations discussed in
Chapter 2.

Chapter 4 describes the programmer’s view of SIM68 and introduces the student to
machine language programming and assembly language programming using a very simple
instruction set. This material, along with the fundamentals, provides the necessary motiva-
tion for the next chapter.

Chapter 5 describes the register-level building blocks used in computers including
registers, encoders, decoders, multiplexers, memory, and arithmetic and logic units. The
chapter then proceeds to demonstrate how SIM68 might be constructed from these compo-
nents while introducing the student to register description languages, clocked sequence
logic, and microprogramming. The chapter concludes with a discussion of the MC63000,
MC68010, MC68020, MC68030, MC68040, and MC88100 (RISC) processors and is
intended to be used for supplemental (or “advanced”) reading.

Chapter 6 introduces addressing modes as a general issue and then introduces the
MC68000 from the programmer’s perspective. We have attempted to first explain address-
ing modes without specific mention of MC68000. It is hoped that this “preview” of
addressing and a discussion of why addressing modes are useful will allow an easier grasp
of the plethora of addressing modes provided by the MC68000. After discussing the
MC68000 we conclude the chapter by examining the more advanced addressing modes as
found in the MC68020, MC68030, MC68040, and RISC architectures. This material is
intended as an “advanced” section. Again this chapter is written so that architecture is not
a required component.

Chapters 7 to 9 contain a full treatment of the various instructions, modes, and
operand sizes of the MC68000. Chapter 7 presents the majority of the instructions and is
most detailed. The chapter introduces instructions as follows: binary integer arithmetic,
moving data around, branching and looping, logical and bit operations, and decimal arith-
metic. In Chapter 8 we extensively discuss subroutines, the frame concept for high-level
programming support, introduce the concepts of static and dynamic libraries, and explain
macroprocessing. Chapter 9 discusses exception processing including internal and external
interrupts. These chapters contain the bulk of the assembly language component of the
text. As with earlier chapters, we also include some “advanced” topics related to the
MC68020, MC68030, MC68040, and RISC processors as appropriate.

Chapter 10 contains device control and memory management. We provide a detailed
explanation of a simple serial port controller, a parallel port controller, and a timer. These
explanations include code examples. Also discussed are component-level diagrams of
more complex DMA devices including disk-drive and Ethernet controllers. Through these

Preface Xix

demonstrations and discussions, we hope that the student will at least be able to understand
the concepts of device drivers and device control, which they might encounter in later
courses (e.g., operating systems). The section on virtual memory, although not really an
external “device” is included as an “advanced” topic.

Chapter 11 contains an introduction to computer networks. The authors view this
area, in particular, as an extension of single-system computer organizations. Included in
this chapter is a brief history of computers and how networks fit into this history; a simple
taxonomy for networks; an introduction to the ISO/OSI model; an example using the Inter-
net; and how computer networks are reaching into the domestic environment via ISDN.

It should be clear from the previous paragraphs that this text provides both an intro-
duction to computer organization and to assembly language programming. By appropriate
use of this text, an instructor may cover either one, the other, or both of these components
depending on curriculum requirements and how familiar this material is to the student. We
believe that this (re)integration of these subjects will satisfy CIS requirements without tak-
ing the time that completely separate courses would require.

USING THIS BOOK AS A TEXTBOOK

This book has been used for the last four years as the main text in a three-credit semester
course, Introduction to Computer Organization, at the Department of Computer and Infor-
mation Sciences at the University of Florida. The students enrolled in this class are both
graduate and undergraduate students in Engineering, Liberal Arts and Sciences, as well as
Business students. The course is meant for those who have acquired respectable program-
ming skills, knowledge of at least one modern high-level language (preferably Pascal or C).
Exposure to courses such as Data Structures and Operating Systems would help to a certain
degree, but, they are not prerequisites.

It is our experience that it is very difficult for an instructor to cover the entire book in
class. Instead, we prefer to present the most important topics in class and assign other parts
of the book as background reading. Certain sections can be omitted altogether. The issue
of what may be considered an important topic depends both on the background of the stu-
dents and what the instructor thinks is important. In our case we rapidly cover the material
in Chapters 1 and 2 with the exception of some boolean algebra, gates, and minimization.
We then cover Chapters 3 and 4 completely. At this point there is plenty of additional
material that may be assigned if required. Also, the students are now in a position to begin
writing programs using SIM68. We always assign one machine code program. After
Chapter 4 we cover Chapters 6 to 8. This block represents the MC68000 component and
allows us to assign successively more complex programs. We then cover Chapter 5, which
overlaps with their assignments. Finally we discuss the computer connected to the outside
world with Chapters 9 to 11. Again Chapters 9 and 10 allow us to assign simple device
control exercises, and Chapter 11 is covered in class.

Because we believe that the students learn programming by writing assembly pro-
grams, we give three to four programming assignments during the semester. Each of these
assignments deals with some aspect related to the course. The early assignments are
directed toward table manipulation and simple arithmetic operations; the later assignments
are “real projects” such as writing portions of a SIM68 assembler in MC68000 code. This

XX Preface

provides the students with a link between the hardware (computer organization) and the
software (assembly language programming). We make use of Motorola’s single-board
computers in a lab; however, we have a complete portable software environment (described
in Appendix F) that allows students to write, assemble, and “run” (via simulation)
MC68000 programs on many platforms including the IBM PC, the Unix environment, and
the Amiga. This environment is available at no cost from the authors.

ACKNOWLEDGMENTS

Many people have been helpful and supportive during the period we have been writing this
text. First, we would like to thank the following for their technical assistance: Andy
Wilcox, for keeping things running smoothly(!); Steve Croll, for his assistance in writing
the MC68000 assembler and several program segments; Wayne Wolfe, for developing the
MC68000 simulator; Laura Allen, for including a disassembler and breakpoint support into
the simulator; Tom Hain, for his work on the SIM68 hardware design; Debra Livadas and
Joseph Vice for their excellent preliminary editing; and the many other consultants for their
input. We would next like to thank our wives Debra and Kathleen who have given support
and understanding throughout, have made many useful suggestions, and have stimulated
extensive discussions about topics throughout the text. We would also like to thank the fol-
lowing reviewers for their thoughtful comments: James F. Peters III, University of
Arkansas; Ron McCarty, Behrend College; Charles T. Zahn, Pace University; and John
McCabe, Manhattan College. Finally, we would like to thank our many students (who used
the first, as well as subsequent, drafts of this text) for their help in identifying areas of the
book that needed more clarification and for their support.

Preface : XXi

Contents

PREFACE

Xv

1 INTRODUCTION 1

1.1 Basic Concepts 1

1.2 Structured Layers of a Computer System 4

1.2.1
1.2.2
1.2.3

Hardware Layer, 5
Software Layer, 13
User Layer, 19

1.3 Programming Design Techniques 20

1.3.1
1.3.2
1.3.3

Top-down Programming, 21
Bottom-up Programming, 24
Middle-out Programming, 24

1.4 Exercises 24

2 FOUNDATIONS 26

21 Number Systems 26

2.1.1
2.1.2
2.1.3
2.14
2.1.5

Unsigned Integer Representation, 27
Conversion from One Base to Another, 29
Unsigned Integer Arithmetic, 33

Signed Integer Representation, 40

Two’s Complement Representation, 45

Vi

22 Boolean Logic 48

2.2.1 Basics, 48

2.2.2 Boolean Algebra, 49

2.2.3 Boolean Functions and Circuits, 57

2.2.4 Truth Tables, 58

2.2.5 Boolean Representations and Operator
Precedence, 60

2.2.6 Normal Forms for Expressions and
Minimization, 62

2.2.7 Karnaugh Maps, 65

2.2.8 Summary of Boolean Logic, 73

23 Gates—Implementation 74

2.3.1 Circuit Characteristics, 75

2.3.2 Bipolar Technology, 76

2.3.3 Unipolar Technology, 80

2.3.4 Gallium Arsenide Technology, 83

2.3.5 Integrated Circuits and IC Packaging, 83

24 Logic Circuits—Implementation 86

2.4.1 Clocks and Timing Cycles, 86
2.4.2 Combinational Circuits, 89
2.4.3 Sequential Circuits, 93

2.5 Exercises 102

PRINCIPAL COMPONENTS OF A COMPUTER
SYSTEM 106

3.1 Main Memory Organization 106

3.1.1 Unit of Storage, 106

3.1.2 Smallest Addressable Unit, 106
3.1.3 Memory Capacity, 108

3.1.4 Address Space and Bus, 108
3.1.5 Data Bus, 108

3.1.6 Words, 109

3.1.7 Longwords, 111

3.1.8 Alignment, 111

3.1.9 Character Representation, 112
3.1.10 Memory Types, 115

32 CPU 115

3.2.1 General-register Architecture, 115
3.2.2 Accumulator Architecture, 121

33 Secondary Storage 122
3.3.1 Sequential Access Storage Devices, 123

3.3.2 Direct-access Storage Devices, 126

Contents

34

3.5

3.6

I/O Device Interaction 130
3.4.1 Device Controllers, 130
3.4.2 Device Drivers, 133

Computer Communications 133

3.5.1 Networks, 134
3.5.2 Multiprocessing, 135

Exercises 138

4 SIM68 COMPUTER

4.1

4.2

43

44

4.5

Main Memory Organization 140
4.1.1 Data Information, 140
CPU 141

4.2.1 Data Registers, 141

4.2.2 Address Registers, 142

4.2.3 Program Counter Register, 142
4.2.4 Status Register, 142

SIM68 Machine Language 143

4.3.1 Operand Addressing, 143

4.3.2 Instructions, 145

4.3.3 Instruction Set Summary, 170

4.3.4 Coding and Executing SIM68 Machine Language
Programs, 170

SIM68 Assembly Language 180

4.4.1 Basic Concepts of an Assembler, 180
4.4.2 Source Module, 180

4.4.3 ASMO68 Instructions, 186

4.4.4 ASM68 Directives, 188

4.4.5 Example, 192

Exercises 193

5 SYSTEM COMPONENT IMPLEMENTATION

5.1

52

Contents

Building Blocks 199

5.1.1 Encoders and Decoders, 199
5.1.2 Multiplexers and Demultiplexers, 202
5.1.3 Tristate Buffers, 205

Main Memory 206

5.2.1 Static RAM, 208
5.2.2 Dynamic RAM, 208

140

199

vii

5.3 General-Purpose Computation Unit 210

5.3.1 ALU, 211

5.3.2 ALU Status Lines, 217
5.3.3 Shift/Rotate Unit, 220
5.3.4 CPU Control Design, 220

54 Additional Architecture Terminology 238

5.4.1 Von Neumann Architecture, 238
5.4.2 Harvard Architecture, 238
5.4.3 Functional Unit, 238

5.4.4 Pipelining, 238

5.4.5 Cache, 239

5.5 General CPU Designs 239

5.5.1 Single-register Designs, 240
5.5.2 Multiple-register Designs, 241
5.5.3 General-purpose Register Designs, 242

5.6 SIM68 CPU Detail Design 245

5.6.1 Timing and Sequencing, 247
5.6.2 CPU Design, 249
5.6.3 Microprogrammed Implementation, 277

5.7 Illustrative Architectures 286

5.7.1 MC68000—16/32-Bit Architecture, 286

572 MC68020 and MC68030 Modern CISC Architectures, 286
5.7.3 MC68040—CISC Architecture, RISC Engine, 287

5.7.4 MC88100—Modern RISC Architecture, 287

5.8 Exercises 290
6 ADDRESSING SCHEMES AND THE MC68000 292

6.1 Addressing Modes 292

6.1.1 Immediate Addressing Schemes, 293
6.1.2 Register Addressing Schemes, 294
6.1.3 Memory Addressing Schemes, 295
6.1.4 Use of Addressing Modes, 301

6.1.5 Why So Many Modes?, 302

6.2 MC68000 Computer 303

6.3 Main Memory Organization 304
6.3.1 Data Information, 304

6.4 CPU 304

6.4.1 Data Registers, 304
6.4.2 Address Registers, 304

viii Contents

6.5

6.6
6.7
6.8

6.4.3 Program Counter Register, 305
6.4.4 Status Register, 305

MC68000 Machine Language 308

6.5.1 Instructions, 308
6.5.2 MC68000 Addressing Modes, 308
6.5.3 Coding of Machine Language Instructions, 310

MC68020/030/040 Addressing Modes 314
RISC Addressing Modes 316

Exercises 317

7 ASSEMBLY LANGUAGE FOR THE MC68000

7.1

7.2
7.3

7.4
7.5

7.6

Basic Concepts 319

7.1.1 Symbols, 320

7.1.2 Opcodes, 320

7.1.3 Operands, 321

7.1.4 Register Notation, 324

7.1.5 Mode Specification and Operand Notation, 325

Categories of Addressing Modes 333
Directives and Constants 335

7.3.1 Run-time Constants, 335

7.3.2 Assembly-time Constants, 336
7.3.3 ORG and END Directives, 337
7.3.4 INCLUDE Directive, 338

7.3.5 LIST and NOLIST Directives, 338
7.3.6 CNOP Directive, 338

Position-dependent versus Position-independent Code 339

Instructions 342

7.5.1 Binary Integer Arithmetic, 343
7.5.2 Moving of Data, 367

7.5.3 Branching and Looping, 382
7.5.4 Logical and Bit Operations, 387
7.5.5 Decimal Arithmetic, 415

7.5.6 Real Number Arithmetic, 420

Exercises 432

8 SUBROUTINES AND MACROS

8.1

Contents

Subroutines 437

8.1.1 What Is a Stack?, 440
8.1.2 Calling Subroutines, 441

319

437

8.2

8.3

8.4
8.5
8.6

8.1.3 Returning from Subroutines, 443

8.1.4 Passing Parameters, 446

8.1.5 Recursive Routines, 449

8.1.6 Subroutines in a High-level Language Environment, 454

Modules, and Internal and External Subroutines 461

8.2.1 Internal Subroutines, 461
8.2.2 External Subroutines, 461
8.2.3 Standard Parameter Convention, 468

Subroutine Libraries 468

8.3.1 Static versus Dynamically Linked Libraries, 469
Macros 470

Conditional Assembly 477

Exercises 481

9 EXCEPTIONS

9.1

9.2

9.3
9.4

9.5

Internal Exceptions 489

9.1.1 Trace Exception, 489

9.1.2 Divide by Zero Exception, 489

9.1.3 Privileged Instruction Exception, 491

9.1.4 Unimplemented and lllegal Instruction Exceptions, 491
9.1.5 Trap Exceptions, 495

9.1.6 Check Instruction, 496

9.1.7 Address Error, 497

External Exceptions 497

9.2.1 Reset, 497
9.2.2 Interrupts, 498
9.2.3 Bus Error, 501

Nested Exceptions 504
Exception Processing in the MC68010/20/30 505

94.1 MC68010, 505
9.4.2 MC68020, 505
9.4.3 MC68030, 506

Exercises 506

10 COMMUNICATING WITH THE OUTSIDE WORLD

10.1

I/O Modules 509

10.1.1 Internal Interface, 510
10.1.2 External Interface, 510
10.1.3 Programmers Interface, 512

483

508

Contents

10.2

10.3

10.4

10.5

10.6

Methods of /O 515

10.2.1 Programmed I/O, 515
10.2.2 Interrupt-driven I/O, 515
10.2.3 Direct Memory Access (DMA), 518

Memory Hierarchy 523

10.3.1 Caches, 523
10.3.2 Virtual Memory, 525

Multiprocessor Systems 532

10.4.1 Design Considerations, 532
10.4.2 TAS Instruction, 533

ECB 533

10.5.1 Principal Components of the ACIA, 534
10.5.2 I/O Programming the ACIA, 540

10.5.3 Principal Components of PI/T, 546
10.5.4 Timer, 556

Exercises 566

11 Computer Networking

11.1
11.2
11.3
114

11.5

11.6

Contents

Historical Perspective on Computing 567
Advantages and Disadvantages of Computer Networks
Network Terminology and Configurations 574
ISO/OSI Reference Model 579

11.4.1 ISO/OSI Model Introduction, 579
11.4.2 Layer I—Physical Layer, 582
11.4.3 Layer 2—Data Link Layer, 584
11.4.4 Layer 3—Network Layer, 588
11.4.5 Layer 4—Transport Layer, 591
11.4.6 Layer 5—Session Layer, 592
11.4.7 Layer 6—Presentation Layer, 593
11.4.8 Layer 7—Application Layer, 601

Design Considerations 604

11.5.1 Subnet Design, 604
11.5.2 LAN Design, 607

Example Network Protocols—Internet 608

11.6.1 LAN Standards, 608

11.6.2 MAN Standards, 611

11.6.3 TCP/IP Internetworking, 612

11.6.4 Sample Applications: Telnet, FTP, SMTP,
and NNTPF, 620

572

567

xi

