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Preface

Since 1985, the Conference on Uncertainty in Artificial Intelligence (UAI) has been the primary international
forum for presenting new results on the use of principled methods for reasoning under uncertainty within
intelligent systems. The scope of UAI is wide, including but not limited to representation, automated reason-
ing, learning, decision making, and knowledge acquisition under uncertainty. The Eighteenth Conference on
Uncertainty in Artificial Intelligence (UAI-2002) continues in this tradition, including contributions that report
on advances in these core areas, as well as insights derived from the construction and use of applications
involving uncertain reasoning.

This volume comprises the papers accepted for presentation at UAI-2002, held at the University of Alberta,
Edmonton, Canada, from August 1 through August 4, 2002. Papers appearing in this volume were subjected to
rigorous review—three Program Committee members (or in some cases, auxiliary reviewers) reviewed each
paper under the supervision of an Area Chair, who made recommendations to the Program Chairs. This year
192 papers were submitted to UAI, with 66 accepted for presentation at the conference. All accepted papers
appear in this volume.

Continuing with the tradition of UAI, two awards were presented at this year’s conference: a Best Paper award
for outstanding technical contribution and a Best Student Paper award. We are pleased to present the UAI-2002
Best Paper Award to Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky for their paper, “A New
Class of Upper Bounds on the Log Partition Function.” We are also pleased to present the UAI-2002 Best
Student Paper award to Carlos Brito and Judea Pearl for their paper, “Generalized Instrumental Variables.”

In addition to the presentation of technical papers, we are very pleased to have five distinguished invited
speakers: Persi Diaconis (Stanford), Eric Grimson (MIT), Rob Schapire (AT&T), Sebastian Thrun (Carnegie
Mellon University), and Peter P. Wakker (Maastricht University). Rob Schapire, Sebastian Thrun, and Peter P.
Wakker have also contributed papers to this volume representing their invited talks. UAI-2002 also continues
the tradition of offering a full-day course on Advanced Topics in Uncertainty, consisting of four tutorials by
Craig Boutilier (University of Toronto), Michael Collins (AT&T), Dan Geiger (Technion), and Carla Gomes &
Bart Selman (Cornell University).

The set of papers, invited talks, and full day course constitute the technical program of the UAI conference. We
are proud of the quality of this year’s program, and are looking forward to continued growth and contributions
to future UAI conferences.

Adnan Darwiche and Nir Friedman
Program Co-Chairs

Daphne Koller
Conference Chair
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Markov Equivalence Classes for Maximal Ancestral Graphs

R. Ayesha Ali
Thomas S. Richardson
Department of Statistics
University of Washington

BOX 354322
Seattle, WA 98195-4322
ayesha@stat.washington.edu

Abstract

Ancestral graphs provide a class of graphs
that can encode conditional independence re-
lations that arise in directed acyclic graph
(DAG) models with latent and selection vari-
ables, corresponding to marginalization and
conditioning. However, for any ancestral
graph, there may be several other graphs to
which it is Markov equivalent. We introduce
a simple representation of a Markov equiv-
alence class of ancestral graphs, thereby fa-
cilitating the model search process for some
given data. More specifically, we define a join
operation on ancestral graphs which will as-
sociate a unique graph with an equivalence
class. We also extend the separation crite-
rion for ancestral graphs (which is an exten-
sion of d-separation) and provide a proof of
the pairwise Markov property for joined an-
cestral graphs. Proving the pairwise Markov
property is the first step towards developing
a global Markov property for these graphs.
The ultimate goal of this work is to ob-
tain a full characterization of the structure of
Markov equivalence classes for maximal an-
cestral graphs, thereby extending analogous
results for DAGs given by Frydenberg (1990),
Verma and Pearl (1991), Chickering (1995)
and Andersson et al. (1997).

Keywords: maximal ancestral graphs,
joined graphs, Markov equivalence, DAG
models, latent and selection variables.

1 INTRODUCTION

A graphical Markov model is a set of distributions
that can be described by a graph consisting of vertices
and edges. The independence model associated with a
graph is the set of conditional independence relations

encoded by the graph. In this paper, we focus on the
problem of learning causal structure. We suppose our
observed data was generated by a process represented
by a DAG with latent and selection variables. The
causal interpretation of such a DAG is described by
Spirtes et al. (1993), and Pearl (2000). There may be
situations in which data collected from some process
represented by a given data-generating process D is
such that: i) measurement on some variables are un-
observed (latent variables), and ii) some variables have
been conditioned on (selection variables). One might
think that in this case, though we may not be able
to determine the influence of any hidden variables, we
could just consider the observed variables and at least
correctly represent the independence relations among
them. Unfortunately, this is not always the case for
DAG models because they are not closed under con-
ditioning or marginalization. This point can be better
understood through the following example.
T

(i)Mcm W AP Ap —=CD4

time: 1 2 3 4 time: 1 2 3 4

Figure 1: (i) A DAG with a latent variable H. (ii) A
model search that does not include H may add an extra
edge from Azt to CD4.

Consider the toy example given in Figure 1(i)*. Azt is
a drug given to AIDS patients to increase their CD4
counts. Ap is a drug often given to AIDS patients to
treat opportunistic infections. This graph pertains to
the hypothetical experiment wherein subjects are ran-
domized to Azt at time 1 and Ap at time 3, and then
the outcome, C'D4 count, is observed some time in the
future. Suppose that there are side effects associated
with Azt such that some of the patients on Azt de-
velop the opportunistic infection Pcp, but Azt has no

*The example given in Figure 1 is a fictitious experiment
based on an observational study analyzed by Herndn et al.
(2000).



effect on CD4 count. H refers to a patient’s under-
lying health status, which is not observed. A subject
with poor health status may be more likely to develop
Pcp (observed at time 2), and she may also be more
likely to have a low C' D4 count. Note that temporal
knowledge gives a total ordering on the variables.

The DAG implies the following: (Aztl {Ap,CD4},
Apll {Azt, Pcp}). In particular, note that Azt is
marginally independent of CD4. Given data gener-
ated by this DAG, a search over DAGs containing only
the observed variables, and consistent with this time-
ordering, would asymptotically find a DAG with an
extra edge from Azt to CD4 (see Figure 1(ii)). From
such a search one could draw the incorrect conclusion
that Azt influences C D4 count. There is no DAG that
can represent all of, and only, these independence rela-
tions using the observed variables alone. One approach
to this problem would be to introduce latent variables
into the model. However, introducing latent variables
to a model may remove some of the desirable prop-
erties of the statistical distributions associated with
the graph: these models may not be identifiable; the
likelihood of the parameters for a specific model may
be multi-modal; inference may be highly sensitive to
the assumptions made about the unobserved variables;
and the associated distributions may be difficult to
characterize, in particular they may not form a curved
exponential family. See Settimi and Smith (1999) and
Geiger et al. (1999).

If detailed background knowledge is known about the
process, then one might use a latent variable model,
and exploit this information during the model search
process. However, in the absence of background knowl-
edge, we are in a dilemma: including latent variables
explicitly can make modelling difficult, particularly
when the structure of the graph is not known; not
including hidden variables can potentially lead to mis-
leading analyses (e.g. extra edges may be introduced
to the graph). However, ancestral graphs are a class of
graphs that, using only the observed variables, can en-
code the conditional independence relations given by
any data-generating process that can be represented
by a DAG with latent and selection variables. More
precisely, it is shown in Richardson and Spirtes (2000)
that if D is a DAG over the vertex set V' with latent
variables L and selection variables S, then there ex-
ists an ancestral graph G with vertex set V\(SU L)
which is Markov equivalent to D on the V\(S U L)
margin conditional on S. Furthermore, Richardson
and Spirtes (2000) have shown that for any ancestral
graph G (DAGs form a subset of ancestral graphs) with
latent and selection variables, there are graphical op-
erations corresponding to “marginalization” and “con-
ditioning” such that the resulting graph represents the

ALl & RICHARDSON
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independence model obtained by taking the set of dis-
tributions represented by G and then integrating out
the latent variables and conditioning on the selection
variables. The resulting graph is itself an ancestral
graph and represents the set of conditional indepen-
dence relations holding among only the observed vari-
ables. Given the selection variables, the associated
statistical models retain many of the desirable proper-
ties that are associated with DAG models.

However, as with DAG models, for any ancestral
graph, there are potentially several other graphs that
represent the same set of distributions. Such graphs
are said to be Markov equivalent. Consequently, data
cannot distinguish between Markov equivalent graphs.
We define a join operation on ancestral graphs which
associates a unique graph with an equivalence class.
We also extend the separation criterion (See Defini-
tion 2.2) for ancestral graphs (which is an extension of
d-separation) and provide an outline of the proof of the
pairwise Markov property for joined ancestral graphs.
Andersson et al. (1997) showed that the graph result-
ing from joining a Markov equivalence class of DAGs is
a chain graph. They also characterized the structure of
this chain graph and showed that it is Markov equiv-
alent to the original DAGs in the equivalence class.
The pairwise Markov property for joining DAGs fol-
lows from their finding. Partial characterizations of
Markov equivalence classes for ancestral graphs have
been obtained using POIPGs and PAGs by Richard-
son and Spirtes (2002) and Spirtes et al. (1993). A
key difference between these authors’ works and the
present investigation is that the representation given
here is guaranteed to include all arrowheads common
to every graph in the equivalence class, whereas this
is not true in the previous work. In other words, the
representation here is guaranteed to be complete with
respect to arrowheads (see Meek (1995)). The graphs
described here are analogous to the essential graph for
DAGs (Andersson et al. (1997)), while previous rep-
resentations have been analogous to Patterns (Verma
and Pearl (1991)).

Section 2 provides some basic definitions; Section 3
starts to characterize various aspects of joined graphs
with respect to minimal inducing paths; Section 4 out-
lines the proof that the joined graph formed by joining
Markov equivalent maximal ancestral graphs is itself
maximal; and finally, Section 5 outlines areas for fu-
ture research.
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2 BASIC DEFINITIONS

2.1 VERTEX RELATIONS

If there is an edge between o and § in the graph G,
then a is adjacent to (sometimes referred to as “an
adjacency of”’) B and vice versa.

If @ and 8 are vertices in a graph G such that a < £,
then « is a spouse of 8 and vice versa.

If a and § are vertices in a graph G such that a — £,
then a is a parent of 3, and B is a child of a.

If there is a directed path from «a to 8 (ie. a ——
... = f) or a = 3, then a is an ancestor of 8, and 3
is a descendant of a. Also, this directed path from «
to B is called an ancestral path.

2.2 ANCESTRAL GRAPHS

The basic motivation for developing ancestral graphs
is to enable one to focus on the independence structure
over the observed variables that results from the pres-
ence of latent variables without explicitly including la-
tent variables in the model. Permitting bi-directed
(¢») edges in the graph allows one to graphically rep-
resent the existence of an unobserved common cause of
observed variables. For Figure 1(i) this corresponds to
removing H from the graph and adding a bi-directed
edge between Pcp and CD4. Undirected edges ( — )
are also introduced to represent unobserved selection
variables that have been conditioned on rather than
marginalized over. However, interpreting ancestral
graphs is not so straightforward. Richardson and
Spirtes (2002) provides a detailed discussion on the
interpretation of edges in an ancestral graph. Further
details of the basic definitions and concepts presented
here can also be found in Richardson and Spirtes
(2000).

Definition 2.1 A graph, which may contain undi-
rected (— ), directed edges (—) and bi-directed edges
(+>) is ancestral if:

(a) there are no directed cycles;

(b) whenever an edge x «» y is in the graph, then z is
not an ancestor of y, (and vice versa);

(c) if there is an undirected edge x — y then x and y
have no spouses or parents.

Conditions (a) and (b) may be summarized by saying

that if  and y are joined by an edge and there is an

arrowhead at x, then z is not an ancestor of y; this

is the motivation for the term ‘ancestral’. Note that

by (c), the configurations -+ v — and <> v — never

occur in an ancestral graph.

A natural extension of Pearl’s d-separation criterion
may be applied to ancestral graphs. For ancestral
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graphs, a non-endpoint vertex v on a path is said
to be a collider if two arrowheads meet at v, i.e.
=V 4, &V S, v or & v ¢ all other
non-endpoint vertices on a path are non-colliders, i.e.
—V—, —U D, U, U .

Definition 2.2 In an ancestral graph, a path =
between o and 8 is said to be m-connecting given Z
if the following hold:

(i) No non-collider on m is in Z;
(ii) Every collider on 7 is an ancestor of a vertez in Z.

Two vertices a and B are said to be m-separated given
Z if there is no path m-connecting o and 8 given Z.

Definition 2.2 is an extension of the original definition
of d-separation for DAGs in that the notions of ‘col-
lider’ and ‘non-collider’ now include bi-directed and
undirected edges. Since m-separation characterizes
the independence relations in an underlying probabil-
ity distribution compatible with a graph, tests of m-
separation can be used to determine when graphs are
Markov equivalent to each other.

Definition 2.3 Two graphs G; and G5 are said to be
Markov equivalent if for all disjoint sets A, B, Z (where
Z may be empty), A and B are m-separated given Z
in Gy if and only if A and B are m-separated given Z
mn 92.

Independence models described by DAGs satisfy pair-
wise Markov properties such that every missing edge
corresponds to a conditional independence relation.
In general, this property does not apply to ancestral
graphs. For example, there is no set which m-separates
7 and ¢ in the graph in Figure 2(a), which motivates
the following definition:

Definition 2.4 An ancestral graph G is said to be
“mazimal” if, for every pair of non-adjacent vertices
a, B there exists a set Z(a, ¢ Z), such that a and 8
are m-separated conditional on Z.

These graphs are termed mazimal in the sense that no
additional edge may be added to the graph without
changing the associated independence model. It has
been shown in Richardson and Spirtes (2000) that if
an ancestral graph is not maximal, then there exists
at least one pair of non-adjacent vertices {a, 3}, for
which there is an “inducing path” between a and 3
where:

Definition 2.5 An inducing path 7 is a path in an
ancestral graph such that each non-endpoint vertez is
a collider, and an ancestor of at least one of the end-
points.
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(a) The path {v,8,a,0} is an example of
an inducing path in an ancestral graph. (b) A maximal
ancestral graph Markov equivalent to (a).
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Figure 2:

Figure 2(a) shows an example of a non-maximal an-
cestral graph. By adding a bi-directed edge between
and ¢, the graph can be made maximal, as shown in
Figure 2(b).

Definition 2.6 Suppose {(a,8,8) are vertices in a
graph such that o and 8 are adjacent, and 3 and § are
adjacent. If o and § are also adjacent, then («a,f,d)
is “shielded”. Otherwise, if a and § are not adjacent,
then (a, B,0) is “unshielded”.

One of the key differences between DAGs and ances-
tral graphs is that there are some shielded colliders in
ancestral graphs G that must be present in any other
ancestral graph Markov equivalent to G; considering
shielded colliders is not important in determining
Markov equivalence for DAGs. Discriminating paths
are useful for identifying which shielded colliders (and
non-colliders) are required for ancestral graphs to be
Markov equivalent:

Definition 2.7 U = (z,¢1,¢2,...,¢p,05,y) is a dis-
criminating path for B in an ancestral graph G if and
only if:

(i) U is a path between x and y with at least three
edges,

(ii) U contains 8,8 # z,8 % vy,

(i) B is adjacent to y on U, = is not adjacent to y,
and

(iv) For every vertex q;,1 < i < p on U, excluding
z,y, and B, q; is a collider on U and q; is a
parent of y.

Given a set Z, if Z does not contain all ¢;,1 <1 < p,
then the path (z,q1,...,¢;,y) is m-connecting where
gi ¢ Z and ¢; € Z for all i < j. If Z contains
{q1,...,9p} and B is a collider on the path U in the
graph G, then 8 ¢ Z if Z m-separates z and y. Con-
sequently, in any graph Markov equivalent to G con-
taining the discriminating path U, § is also a collider
on U. Similarly, if 8 is a non-collider on the path U
then f is a member of any set that m-separates z and
y, and § is a non-collider on U in any graph Markov
equivalent to G containing U. In other words, 3 is “dis-
criminated” to be either a collider or a non-collider on
the path U in any graph Markov equivalent to G in
which U forms a discriminating path, even though it
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is shielded. The paths (z,q,8,y) in G; and Gs from
Figure 4 are examples of discriminating paths for 3.
Note that if 5 is a non-collider on U, then 8 — y in G.

Definition 2.8 A “collider path” in an ancestral
graph G is a path such that every vertex, except the
endpoints, is a collider on that path.

From the definition of a discriminating path, the sub-
path of U from z to § forms a collider path. So refer-
ring to G; and G, in Figure 4, the path (z,q,8) is a
collider path (and in fact, in these examples, (z, q, 3, y)
forms a collider path too).

2.3 CHARACTERIZATION OF MARKOV
EQUIVALENCE

Spirtes and Richardson (1997) proved the following re-
sult:

Theorem 2.1 (Markov Equivalence) Two mazimal
ancestral graphs G, and Gy are Markov equivalent if
and only if:

(i) G1 and G2 have the same adjacencies;
(i) G1 and Go have the same unshielded colliders; and
(i3) If U forms a discriminating path for B in G; and
Ga, then B is a collider in Gy if and only if it is a
collider in Gs.

2.4 JOINED GRAPHS

Here we define the join operation as a method of iden-
tifying the features common to a set of Markov equiv-
alent ancestral graphs. By definition, a set of Markov
equivalent maximal ancestral graphs are required to
have the same vertex set and adjacencies. The join
operation can be thought of as an AND operation on
the “arrowheads” of the set of Markov equivalent an-
cestral graphs being joined, and an OR operation on
the “tails” of these graphs.

Definition 2.9 Let G1,Gs,...,G, be graphs with the
same adjacencies. A joined graph, H is any graph
constructed in the following way:

(i) H has the same adjacencies as G1,Ga,...,Gn,

(ii) For all adjacent o and B, add an arrowhead
at B on the {a,B} edge if and only if there is
an arrowhead at S on the {a,B} edge in all
G1,G2,...,Gn.

In general we will let H refer to a joined graph formed
by joining any number of Markov equivalent maximal
ancestral graphs. We will also generically refer to these
maximal ancestral graphs as G.

Figure 3 provides an example of a joined graph. Note
that since there are arrowheads that meet the undi-
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Figure 3: An example of joining two Markov equivalent
ancestral graphs in which the joined graph is not ances-
tral.

rected edge £ — w in the joined graph, H is not an-
cestral as it violates condition (c) of Definition 2.1.
Figure 4 shows another example of two Markov equiv-
alent graphs being joined. Here, H is itself a member
of the equivalence class of ancestral graphs.

R

X > g—>Yy x—bq—>y x—>q—>y

Figure 4: An example of joining two Markov equivalent
ancestral graphs in which the joined graph is itself a mem-
ber of the equivalence class.

Richardson and Spirtes (2000) showed that for every
non-maximal ancestral graph G, there exists a unique
maximal ancestral graph which is formed by adding
appropriate bi-directed () edges to G (see Figure
2). Hence we restrict our attention to joining sets of
Markov equivalent maximal ancestral graphs in the re-
mainder of this paper. Ideally, any representation of
an equivalence class of ancestral graphs would encode
the same independence model encoded by all the an-
cestral graphs in the equivalence class.

We use the following notation for endpoints in either
an ancestral graph or a joined graph:

1. “a —7?p” is used to denote that there is a tail at
« in the graph, on the edge between « and 3, and
that there may be a tail or an arrowhead at the
B end of this edge.

2. “a «-7p” is used to denote that there is an arrow-
head at «, and either an arrowhead or a tail at 3
on the edge between a and 3.

3. “a? — 7B” is used to denote that there could be
an arrowhead or tail at either end of the (a, 3)
edge.

Note that the above notation is merely a shorthand
since we only consider graphs with edges that are di-
rected, bi-directed and undirected. By joining maxi-
mal ancestral graphs as outlined in Definition 2.9, the
resulting joined graph 7 is not ancestral in general,
see Figure 3. Given that undirected edges can meet
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arrowheads in joined graphs, what is the equivalent of
a d-connecting path for joined graphs? Here we define
a j-connecting path for joined graphs.

Definition 2.10 A path between o and f in a joined
graph H is said to be “j-connecting given a set Z” (Z
disjoint from {c, B} and possibly empty) if:

(1) Every non-collider (? —y — ?,7 — v —,
v «7) on the path is not in Z,
(1)) Every collider (? — v <?) on the path is an an-
cestor of Z, and
(i) No arrowheads meet undirected edges.

If there is no path that j-connects o and B given Z,
then a and B are “j-separated given Z”.

X

b

i
5\

Figure 5: An example of a J-connecting path in a joined
graph: z and y are j-connecting given Z = {z, h}.

Note that this definition is a natural extension of
m-connection for ancestral graphs (and Pearl’s d-
connection for DAGs), with the qualifier that undi-
rected edges meeting arrowheads form neither colliders
nor non-colliders and a path containing such a vertex
is never j-connecting. If we look back at the joined
graph shown in Figure 3, we see that A encodes the
same set of independence relations that the two ances-
tral graphs that gave rise to H encode, namely y_l z,
because there are no j-connecting paths between y and
zin H (the path 2 =  — w <« y is not j-connecting).
Figure 5 shows another example of a j-connecting path.
Here, some vertices in Z are descendants of colliders
on the path between z and y.

The definitions of discriminating paths and inducing
paths for joined graphs remain the same as for ances-
tral graphs. Here we extend the concept of maximal-
ity to joined graphs and in Section 4 we show that the
graph H formed by joining Markov equivalent maxi-
mal ancestral graphs is itself maximal.

Definition 2.11 A joined graph H is said to be “maz-
imal” if, for every pair of non-adjacent vertices a,
there exists a set Z(a,B ¢ Z), such that o and B are
J-separated conditional on Z.

The concept of maximality for joined graphs is anal-
ogous to that for ancestral graphs in that a maximal
joined graph is a joined graph, H, such that no more
edges can be added to 1 without changing the set of
independence relations encoded by H via j-separation.



3 CHARACTERIZING THE
JOINED GRAPH

To date, no full characterization of joined graphs is
readily available. This section presents structural in-
ferences that can be made about joined graphs. For
instance, as with ancestral graphs, the configurations
“s y—" and “» y—"” do not occur in joined
graphs. We also conjecture that the graph resulting
from joining an entire equivalence class of ancestral
graphs can be more constrained than that obtained
by joining only a few members of an equivalence class.

If an edge is oriented the same way in all graphs G
that were joined to form 7, then that edge is said to
be “real” in H. By virtue of the join operation, it is
possible to infer the presence of arrowheads and tails
in joined graphs under certain circumstances. The fol-
lowing lemmas describe some of these situations.

Lemma 3.1 All bi-directed edges in a joined graph
are real. Furthermore, if a? — f — v in H, then the
B — v edge is not real.

Proof: By the definition of the join operation, an ar-
rowhead appears at a vertex in the joined graph # if
and only if there is an arrowhead at that vertex in all
ancestral graphs that gave rise to #. Also, no ances-
tral graph contains undirected edges meeting arrow-
heads, so if an undirected edge meets an arrowhead in
a joined graph (using the example given in the propo-
sition) then there is at least one ancestral graph that
gave rise to H with an arrowhead at § on the 8 — v
edge, i.e. the § — 7y edge is not real.

Lemma 3.2 In a joined graph H, formed by joining
mazimal ancestral graphs, if v — 87 — 787 — v occurs
and v — B is real, then § <75 also occurs in H.

Proof: There cannot be a tail at 8 on the {f,d} edge
in any ancestral graph that gave rise to H because in
that case either 6 = vy 28 >dord v — 5 =0
and the graph would not be ancestral. Thus, 8 <76
in any graph G joined to form X, and hence 8 <74 in
H.

Lemma 3.3 In a joined graph H, formed by joining
mazimal ancestral graphs, if v — 8 — 67 — 7y occurs
and either v — B is real or B — § is real, then v = 6
also occurs in H. Furthermore, if both v — (B and
B — & are real, then v — § is real too.

Proof: First consider the case in which the v — 3
edge is real. Then, 8 is not an ancestor of v in any G
that gave rise to H. If the {,d} edge is undirected, or
there is an arrowhead at «y on this edge in H, then there
is some G that gave rise to H that is not ancestral. So,
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~v — & is in H. A similar argument holds for the case
in which the 8 — § edge is real.

If both edges v — B and 8 — ¢ are real, then v — &
also occurs in H and this edge is real because other-
wise there is some G that gave rise to ‘H that is not
ancestral.

3.1 INFERRING DISCRIMINATING
PATHS

The following lemma and corollary allow us to infer
the presence of discriminating paths.

Lemma 3.4 Let H be a graph formed by joining
a number of Markov equivalent mazimal ancestral
graphs. If there is a discriminating path in H then
this discriminating path is present in every G joined to
form H.

Proof: Suppose in some joined graph #H there is a
path U as described in Definition 2.7. Label the col-
liders on the path between z and 8 as qi1,92,...,4p,
such that ¢; is adjacent to z, and g, is adjacent to §.
Note that (z, 1,492, --,¢p, 3) forms a collider path in
all G that gave rise to H because all arrowheads in H
are also present in all G that gave rise to H. Recall
that = and y are not adjacent. There is an unshielded
non-collider at g; on the path (z,q1,y), but 7 — ¢;.
Because all G that gave rise to H are Markov equiva-
lent, by Theorem 2.1 ¢; is a parent of y in all G that
gave rise to H. Thus, the {q1,y} edge in H is real. We
will now show by induction that all ¢,,2 < m < p are
also parents of y in all G that gave rise to H.

For m = 2, (z,q1,q2,y) discriminates g2 to be a
non-collider in H. Since the ¢; — y edge is real,
this discriminating path is present in all such G, the
g2 — vy edge in H is real. Assume for m < p
that (x,q1,42,---,9m—-1,qm,y) discriminates ¢, to be
a non-collider in all G that gave rise to H so that
gm is a parent of y in all G that gave rise to H.
Then, U = (z,q1,¢2,--+,9m,qm+1,y) discriminates
(@m> @m+1,y) to be a non-collider in H. Because each
of {q1,q2,...,9m} is a parent of y in all G that gave
rise to H, U is a discriminating path present in all such
G and hence the {gm+1,y} edge in H is real. Thus, by
induction, (g1,¢2,.-.,¢p) are all parents of y in all G
that gave rise to H.

But then U* = {z,q1,¢q2,.-.,¢p,8,y} forms a discrim-
inating path for 8 in H; U* is present in all G that
gave rise to H, and thus (g, 5,y) forms a collider in
all G that gave rise to H if and only if (g, 8, y) forms
a collider in H.

Corollary 3.1 If a collider path ¢ = {z,q1,...,qp,05)
is present in all Markov equivalent ancestral graphs



