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Preface8 0

Optimization is concerned with the most efficient allocation of scarce.resources among competing needs
for them, and generally leads to a best plan, design, or operational procedure. Optimization techniques
are employed in solving a broad range of management, engineering, industkial, military, government, and
socio-economic problems. Some of the commonly used ﬁptimization technigues are linear programming,
integer programming, nonlinear programming, dynamic\&O%ramming, ngtwork optimization methods,
and optimal control. \ IE

A large number of application software packages are now able for solving various real-world
optimization problems encountered in industry, business and government projects. For instance, the
petroleum industry makes extensive use of linear programming techniques in scheduling, distribution and
product blending whilst integer programming is being increasingly applied to complex problems of
scheduling operations. Dynamic programming has proved its worth in solving complex replacement
and maintenance problems, and optimal control has proven applications in solving many management
and engineering problems such as optimal advertising policy, minimizing production cost, maximizing
profit, or moving the arm of a robot from one point to another point in minimum time.

With a view to bringing together researchers and practitioners and to provide a platform for the
interchange of information on the multidisciplinary approaches to optimization, ten academic
departments/schools of the National University of Singapore have jointly organised this International
Conference on Optimization Techniques and Applications (ICOTA). It covers all aspects of
optimization, and it is the first such conference in the South East Asian region.

There were some 160 participants from 28 countries. 114 papers were presented at the Conference. This
book contains all the presented papers. This proceedings is divided into the following sections:

® Invited Lectures ® Integer Programming

e General Lectures ® Manufacturing Systems

e Computer Science ® Multicriteria Optimization

e Communication Engineering ® Management

¢ Construction Engineering * Nonlinear Mathematical Programming

e Control and Systems ¢ Optimal Control

¢ Engineering Design e Structural Optimization

e Electrical and Power Systems * Transportation and Production Scheduling
® Graphs and Networks ® Water Resources

¢ Industrial Engineering

It is hoped that the papers will be of interest to researchers and practitioners in the area of optimization
and that these will provide some useful information on recent developments in the area.

In editing these proceedings, we have been assisted by the ICOTA Committee members. Financial
support from the National University of Singapore, Singapore Turf Club and Lee Foundation Singapore,
in organizing the Conference are gratefully acknowledged. We would also like to thank all those who
have in one way or another contributed towards the success of the Conference. Finally, special thanks are
due to Professor H. H. Huang, Deputy Vice-Chancellor, National University of Singapore for his help in
making the Conference a success.

The Editors
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ALGORITHMS FOR LARGE SCALE SET COVERING PROBLEMS

Nicos Christofides

Department of Management Science

Imperial College of Science and Technology
Exhibition Road, London SW7 2BX

United Kingdom

ABSTRACT. This paper is concerned with the set covering problem (scp),
and in particular with the development of a new algorithm capable of
solving large-scale SCP's of the size found in real 1life situations.

The set covering problem has a wide variety of practical applications such
as crew scheduling, vehicle dispatching, facility location, information
retrieval, political districting,- design of switching circuits and
others. A common feature of most of these applications is that they yield
large and sparse SCPs normally with hundreds of rows and thousands of
columns. In this paper we present an algorithm capable of solving
problems of this size and test problems up to 400 rows and 4000 columns
are solved and results reported. This is by far the largest size SCP
reported solved in the literature.

The method developed in this paper consists of a combination of
decomposition and state space relaxation which is a technique recently
developed for obtaining lower bounds on the dynamic program associated
with a combinatorial optimization problem. The 1large size SCP's are
decomposed into many smaller SCP's which are then solved or bounded by
state space relaxation (SSR). Before using the decomposition and SSR,
reductions both in the number of columns and the number of rows of the
problem are made by applying lagrangean relaxation, linear programming and
heuristic methods.

1. INTRODUCTION

1.1 Manuscripts

The set covering problem is a well-known combinatorial optimization
problem consisting of finding a subset of columns of a zero—one mxn matrix

such that it covers the rows of the matrix, at a minimum cost. The
problem is formally stated as the integer program:

n
SCP min X, c. X,
CBlGR) =1 “d
n —_
ste Zj=l aij Xj > 1 (i—l,...,m)
xj e{0,1} (3=1l,...,n)

where cj>0 is the cost of column j and A=[aij] is the mxn zero-one matrix.

Let a; and al denote respectively the i-th row and the j-=th colummn of A,
and let M={1,2,...,m} and N={1,2,...,n}. We denote M.= {ieM : a,.=1} and

=04 = J ij
Ni—{JeN : aij—l}.



The SCP and related problems, have a wide field of applications such as
crew scheduling ([1], [2], [9], [27], [32], 1[35], [37]) vehicle
dispatching ([11]), facility location ([8], [10], [14], [26], [36]1, [39]),
information retrieval ([17]), political and health districting ([16],
[21], [23]), assembly 1line balancing ([38]), minimisation of boolean
expressions ([24], [40]), and others ([7]). See [12] for a computational
study of the SCP and [20] and [5] for detailed surveys.

The SCP ‘also has particularly strong 1links with other combinatorial
optimization problems, especially graph theoretic problems ([34]).

Several algorithms have been proposed for the SCP and can be found in [3],
(4], [e61, I[12], [19], [30]. In this paper, we present and apply an
algorithm for larger size SCP's consisting of a combination of some of the
methods used before for solving the problem, with decomposition and state
space relaxation — which is a technique recently developed for obtaining
lower bounds on dynamic programs ([13], [34]).

In section 2, a procedure to perform reductions on the dimension of the
problem is presented and computationally tested for large size SCP's. The
method consists of a combined utilisation of lagrangean relaxation, linear
programming and heuristics. In section 3, state space relaxation is
applied to tie computation of lower bounds for the SCP and these values
are compared with the LP bounds for different types of test problems. In
section 4, we develop a decomposition technique for large size SCP's which
is combined with state space relaxation obtaining bounds on the optimal
value to the SCP. Computational results are also shown for large scale
problems and for unicost (all c:=1) SCP's. Finally, in section 5, we
present a tree—search algorithm making use of the techniques described in
the previous sections and full computational results for problems with up
to 400 rows and 4000 columns are given.

2. REDUCTIONS FOR LARGE SIZE SET COVERING PROBLEMS

In this section, a procedure to perform reductions on the number of
columns and rows of large size SCP's is presented, and computational
results are shown for three different classes of test problems.

2.1 Preliminary Reductions

Before using an algorithm for solving the SCP a number of -preliminary
reductions can be made both on the columns and rows of the problem. These
are well known in the 1literature and include simple row and column
dominance tests [20].

Some of these reductions are unlikely to be useful for a practical SCP,
but if the problem occurs as a sub-problem of some other SCP, namely in a
tree-search procedure or using any sort of relaxation, then they can be
very effective. The row dominance test may also be useful for randomly
generated problems in which the coefficients a;; are independent random
variables with a fixed probability that aj:=I. The column dominance
although wuseful for several practical examples implies an expensive
computational effort in terms of time for large scale SCP's. Note that
most of the preliminary reductions mentioned in [20] are not useful for

unicost SCP's or when ¢y is proportional to the number of 1's in column e



2.2 Linear Programming Relaxation

The linear programming relaxation of thé SCP is:

LP i I. c. X,
(LP) mn jeN 3 ]
st. I. x, »1 ieM)
jeN, ]
x, » 0 (jeN)

If v(LP) and v(SCP) are the optimum values of LP and SCP respectively then
v(LP)<v(SCP) and if the LP solution is integer then it is the optimal
solution to the SCP. .

The dual linear relaxation of the SCP is then:

(DLP) max ZieM uy
st. ZieMj u; < ¢ (j eN)
uy >0 (ieM)

If DLP is the dual problem to LP and u; are the dual variables then
reduced costs for the variables Xy are given by:
and the variable xj can be removed from the SCP if

j + ZieM u; > z, (2.2) J

S
with z, a known upper bound on v(SCP).
2.3 Heuristics

Heuristic algorithms can be used to obtain both upper and lower bounds on
v(SCP). Tight wupper bounds are important in removing variables from
reduced cost analysis and also in fathoming tests when a tree-search
procedure is being used to solve the problem. Greedy heuristics to obtain
upper bounds to the SCP have been studied in detail in [4] whose main
conclusions were adopted in the algorithm used in this paper. Although
these greedy-type heuristics have a theoretically poor worst case
performance ([15], [28]) they have proved reasonably good for many test
problems. If reduced costs s; for the variables are available, then the
greedy heuristics can be applféd on the basis of s; instead of c;. In [4]
this technique is reported as having consistently improved thé original
"greedy” upper bounds. As will be seen later in this section, our
computational experience confirms that result.

Later on in this paper, we present a heuristic based on the decomposition
of large size SCP's, which yield, in many cases, an improvement on the
upper bounds mentioned above.



2.4 Lagrangean Relaxation

If all the constraints of a SCP are relaxed in a normal lagrangean
relaxation fashion ([22]), one obtains the problem

i - + ¥, .
(LSCPA) min zjeN (cj Zidnj Ai) x.j i oM A

xje{O,l} (jeN)

where Ai>0 is the multiplier associated with row 1.

The optimal solution for LSCPA is
1 if cj - ZieM. A <O
X, = J (2.3)

0 otherwise

and v(LSCPA ) is a lower bound on v(SCP). Subgradient optimization can be
used to modify the multipliers A, in order to improve the lagrangean lower
bound, the best such bound being ‘given by

(DLSCP) V(LSCPA)

X250
It is well known that the optimal multipliers for DLSCP are equal to the
optimal solution for DLP and v(DLSCP)=v(DLP).

If for a particular set of multipliers (A,) expression (2.1) is used
replacing u; by the corresponding A,, then a reduced cost is obtained for

the variable X and it can be dropped from the SCP if

S * v(LSCPA) >z, (2.4)

2.5 Combining LP and Lagrangean Relaxation

Suppose that a number of subgradient optimization iterations are performed
and that at each iteration we do:

(1) Remove any variable satisfying (2.4);

(ii) Starting with No= ¢ add to Ny any variable for which the
reduced cost became negative at any stage of the subgradient
iterations.

(iii) Include in N, the variables in the best available feasible
solution.

The set N, is then a "good"” candidate subset of columns amongst which we
will look for the solution to the SCP and will be used instead of the
complete set N, for the LP relaxation of the SCP. Then, the restricted
linear program which we denote by LP, gives a value v(LPo) greater than
or equal to v(LP) (and could also be greater than v(SCP)). Nevertheless,

if v(LP,) is close to v(LP) then the optimal dual variable to LP, can be
used as a good approximation of the optimal dual variables to LP. Hence,
the lagrangean multipliers in LSCPy may be initialised to those values

and the lagrangean lower bound improved to a value close to v(DLP). The

5



relation between v(LP_.) is stated in the following proposition where DLP
designates the dual linear problem of LP,.

(o]

Proposition 2.1:

If u® = (u is an optimal solution to DLPO, then:

%)
i‘ieM
v(DLPo) + AO < v(LP) < v(LPo) (2.5)

where A =

(o]
o ZjeN-No min (O, ¢y T u;)

ieM, i
J
The proof for this proposition follows easily from setting Ai=u2 in LSCPX
([341).
2.6 Computational Results of Reductions

The above procedure was computationally tested for three different class
of problems depending on their cost function.

(1) costs c; randomly generated from the interval [1,99]

(II) costs c:=1

J
(III) costs Cj proportional to the cardinality of My
i) Cj = 'Mjl
11) 5 = 3.0 + |uy]

In class (I), two sets of test problems were considered:
(I.1) number of rows m=200; number of columns n=2000; density d=5%
(I.2) number of rows m=300; number of columns n=3000; density d=2%

For classes (II) and (III) the same set of problems was tested differing
only in the costs. These problems were of size m=50, n=500, d=20%.

Table 1 summarises-,the computational results for the test problems in
class (I). These ‘are identified in column- (1) by a general designation
Tmxk where m is the number of rows and k is the number given to the test
problem. The initial dimensions of the problem are shown in columns (2)
and (3). Columns (4) and (5) in Table 1 give the dimensions of the test
problem after doing the preliminary reductions. As expected for problems
with random costs, the reduction on the number of variables 1is very
significant mainly due to column dominance tests. For all test problems
in Table 1 the number of variables was reduced by more than 80%. However,
the resulting reduced problem is now a hard problem with the range of the
costs much tighter.

Column (6) in Table 1 shows the values of the greedy heuristic upper
bound. The bounds are reductions related to the first set of iterations
for the Lagrangean relaxation as shown in columns (7) to (10). The upper
bound (column 7) was improved for six of the test problems in Table 1.
The lower bound is given in column (8), but its use did not imply any
significant reduction in the dimensions of the problem as can be seen in
columns (9) and (10).



Column (11) to (l4) in Table 1 are related to the restricted 1linear
program LP. The value v(LP,) 1is sghown in column (12) while the
corresponding lower bound to the SCP, v(LPo)+A » is given in column
(12). This lower bound is for all test problems better than the previous
value (column 8), and further reduction in the dimensions is achieved for
most of the problems using reduced cost analysis. It is worthwhile to
note here that the size of N, was between 1/3 and 1/2 the size of N.

Finally, columns (15) to (18) show the outcome of the second phase
application of lagrangean relaxation using as starting values of ), the
optimal duals for LP,. The lower bound (column 16) improves even further
for all problems and an improvement on the upper bound over the value
derived from greedy for almost all test problems. As a result the
dimension of the problems is reduced even further and for test problem
T300x1 the optimal value is obtained. It has been noted that the reduced
size test problems still have approximately the same density as the
original problem.

Table 2 shows the computational times of each step of the procedure for
the test problems. The LP was solved using the XMP code developed by
Marsten ([31]).

The computational results relative to the test problems of classes II and
III are presented in Table 3 which has the same column designation as
Table 1. We only show the computational results for a small set of test
problems since the performance of the techniques described above is very
similar for the different problems generated in those classes. As
expected the preliminary reductions are not efficient for this type of
problem and the other methods applied do not perform well either. For the
proportional cost problems the LP procedure took too long (a limit of 100
seconds in the CDC 6500 was used) and, hence, the procedure is not
completed for those problems.

2.7 Conclusion

In this section we presented a procedure to perform reductions in the
dimensions of large size random SCP's. The conclusions are as follows:

i) For unicost and proportional-cost SCP's no significant
reduction in the dimensions of the problems could be achieved;

ii) For random-cost SCP's, large problems (with nx10*m) are reduced
to problems with n=m of the same density as the original ones,
and lower and upper bounds are obtained with a gap of less than
6% between them.

3. STATE SPACE RELAXATION FOR THE SCP

Dynamic programming can be used to solve the SCP but this requires, even
for small size problems, too much storage and time to be useful in
practice. One way of reducing the dimension of the state space of a
dynamic program associated with the SCP, 1is presented in this section.
Instead of obtaining an optimal solution to the problem, a lower bound is
computed by solving dynamic programming recursions in a smaller state
space. This corresponds to an idea developed and called state space
relaxation (SSR) in [13] where it is used for the vehicle routing problem.
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TABLE 2

Computing times for the procedure
(CDC 7600 seconds; FTN compiler)

PROBLEN. ‘RECUCTIONS | HEURT STLC | HELAKHTLON PRosiints | FecnaSEM [ rora
(1) (2) (3) (4) (5) (6) (7)
T200X1 .49 v .94 4.2z .81 6.81
T200X2 .48 «33 1.04 4.30 w98 7.08
T200X3 .48 .36 1.05 5.40 39 8.28
T200X4 .48 .33 1.8} 3.17 71 6.60
T200X5 .49 w31 .86 2.87 .75 5.28
T300X1 .45 58 1.42 7.08 " ;7 10.06
T300%2 .45 .48 1.34 | 6.33 1.03 9.563
T300X3 .45 .50 1.52 6.90 180 10.87
T300X4 .45 .40 1.83 10.16 1 u? 13.67
T300X5 .45 .54 1225 4.20 1.05 7.53




