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Introduction

“Ninety percent of inspiration is perspiration.”
31

The Wiener approach to nonlinear stochastic systems [146] permits the
representation of single-valued systems with memory for which a small per-
turbation of the input produces a small perturbation of the output. The
Wiener functional series representation contains many transfer functions
to describe entirely the input-output connections. Although, theoretically,
these representations are elegant, in practice it is not feasible to estimate
all the finite-order transfer functions (or the kernels) from a finite sam-
ple. One of the most important classes of stochastic systems, especially
from a statistical point of view, is the case when all the transfer functions
are determined by finitely many parameters. Therefore, one has to seek
a finite-parameter nonlinear model which can adequately represent non-
linearity in a series. Among the special classes of nonlinear models that
have been studied are the bilinear processes, which have found applica-
tions both in econometrics and control theory; see, for example, Granger
and Andersen (43| and Ruberti, et al. [4]. These bilinear processes are de-
fined to be linear in both input and output only, when either the input
or output are fixed. The bilinear model was introduced by Granger and
Andersen [43] and Subba Rao [118], [119]. Terdik [126] gave the solution of
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a lower triangular bilinear model in terms of multiple Wiener-It6 integrals
and gave a sufficient condition for the second order stationarity. An impor-
tant representation in terms of the generalized transfer functions was given
by Priestley [98] and in terms of higher order spectra by Brillinger [17].

The present work is intended to be a systematic statistical analysis of
bilinear processes in the frequency domain. The first two chapters are de-
voted to the basic theory of nonlinear functions of stationary Gaussian
processes; Hermite polynomials; cumulants; higher order spectra; multiple
Wiener-Ito integrals; and finally, chaotic Wiener-Ito spectral representa-
tion of subordinated processes. Chapter 3 contains the results concerning
bilinear processes. For an easier understanding of the technique of chaotic
representation, three levels of bilinear processes are considered: the sim-
ple bilinear model, the general bilinear model with scalar value, and the
multiple bilinear model. In each case explicit assumptions of second or-
der stationarity and expression for the second order spectrum are given.
The assumptions of the existence of the 2nth order moments are proved
for the general bilinear model with scalar value, and an expression for the
bispectrum is obtained. The Generalized Autoregressive Conditionally Het-
eroscedastic (GARCH(1,1)) model is investigated by the same methods as
the bilinear one, and its basic spectral properties are shown. The bilinear
realization for Hermite degree-N homogeneous polynomial model and its
minimal realization are also considered. There are two chapters for general
nonlinear time series problems. Chapter 4 covers the non-Gaussian estima-
tion. It was Brillinger [21] who suggested using for parameter estimation
not only the spectrum but the bispectrum as well. We give explicit expres-
sion for the asymptotic variance of this estimator and prove the asymptotic
normality and consistency. The asymptotic variance in the case of linear
non-Gaussian processes is expressed in terms of skewness and kurtosis.
This method is used for the parameter estimation of bilinear processes.
The other general problem is in Chapter 5, where we consider the linearity
of a time series. We use a weak notion of linearity of a time series and give
a bispectrum-based test for checking it.

Further references and historical comments on the frequency domain
approach to the time series analysis and nonlinear models are provided in
the works of D. R. Brillinger and T. Subba Rao.
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Data under consideration

There are several fields of data where the linear model does not provide a
satisfactory result. Our aim is to check the linearity of the data, and in case
of nonlinearity, to show the higher order spectral properties and the use of
bilinear fitting. Each of the data sets below are found on the Internet.

The S&P 500 Index

The primary objective of the Standard & Poor’s 500 Composite Stock Price
Index, known as the S&P 500, is to be the performance benchmark for the
U.S. stock market. The Index is a market value-weighted index (shares
outstanding times stock price) in which each company’s influence in In-
dex performance is directly proportional to its market value. The origins
of the S&P 500 Index go back to 1923 when Standard & Poor introduced
a series of indices that included 233 companies and covered 26 industries.
The Index, as it is now known, was introduced in 1957. Today, the S&P
500 encompasses 500 companies, representing 90 specific industry groups.
The Index is widely regarded as the standard for broad stock market per-
formance The data of S&P 500 Index was found at the Web site of the
Chadwick Investment Group by the address

http://chdwk.com/stock.html

among the Historical Stock Price Data. More information about the Index
is listed at

http://www.cftech.com/BrainBank/FINANCE/SandPIndexCalc.html.

Recently, it has been shown [80] the non-Gaussianity of this index, and it
was also pointed out that the probability density functions of GARCH(1,1)
models are quite different from that observed data.

IBM stock prices

The data of the IBM stock prices come also from the Historical Stock Price
Data library of the above named web site. It has been mentioned by the
classic book of time series by Box and Jenkins [14] and also by Tong [140].

Geomagnetic indices

K indices isolate solar particle effects on the earth’s magnetic field. Over a
3-hour period, they classify into disturbance levels the range of variation of
the more unsettled horizontal field component. Each activity level relates
almost logarithmically to its corresponding disturbance amplitude. Three-
hour indices discriminate conservatively between true magnetic field per-
turbations and the quiet-day variations produced by ionospheric currents.
The A-index ranges from 0 to 400 and represents a K-value converted to
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a linear scale in gammas (nanoteslas)—a scale that measures equivalent
disturbance amplitude of a station at which K=9 has a lower limit of 400
gammas. The subscript p means planetary and designates a global mag-
netic activity index. The following 13 observatories, which lie between 46
and 63 degrees north and south geomagnetic latitude, now contribute to the
planetary indices: Lerwick (UK), Eskdalemuir (UK), Hartland (UK), Ot-
tawa (Canada), Fredericksburg, Virginia (USA), Meanook (Canada), Sitka,
Alaska (USA), Eyrewell (New Zealand), Canberra (Australia), Lovo (Swe-
den), Brorfelde (Denmark), Wingst and Niemegk (Germany). For details
see at National Geophysical Data Center

http://www.ngdc.noaa.gov/wdc/.

The aa-index is a simple global index of magnetic activity it is produced in
France from the K indices of two nearly antipodal magnetic observatories
in England and Australia. This index aa, is the 3-hourly equivalent ampli-
tude antipodal index. Daily average aa may be derived similarly to ap. A
historical advantage to using aa is that these indices have been extended
back in time through scaling of magnetic activity from magnetograms of
earlier observations. The aa indices are derived from 1868 to the present.

Magnetic field data

An example of bilinear systems comes from the nuclear magnetic resonance
(NMR) spectroscopy studying the response of a changing magnetic field.
The phenomenon is quantum mechanical and the concerning equation is
bilinear it is called as Bloch equation. Brillinger, [22], [26], considered the
analysis procedures of NMR spectroscopy when both the input and the
output of system are observed. He estimated the unknown parameters of
the bilinear equation. The data we consider here is a component of the
multi-resolution magnetic field of the sun, measured by a spacecraft called
Ulysses. The COHOWeb (http://nssdec.gsfe.nasa.gov/) provides access to
hourly resolution magnetic field and plasma data from each of several helio-
spheric spacecraft. The hourly averages of parameters for the interplanetary
magnetic field between October 25, 1990 and June 30, 1997 were chosen
among the data available at the COHOWeb site. The principal investigator
of magnetic field data was Dr. A. Balogh, Imperial College, London, UK.
Three components of the magnetic field hour average are the following:

Magnetic field hour average of R component (nT).

Magnetic field hour average of T component (nT).

Magnetic field hour average of N component (nT).
The RTN system is fixed at a spacecraft (or the planet). The R axis is
directed radially away from the sun; the T axis is the cross product of the
solar rotation axis and the R axis, and the N axis is the cross product of
R and T.
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Data sets for the paper “A Single-Blind Controlled Competition
Among Tests for Nonlinearity and Chaos” [9]

The data is simulated data, produced from five different generating mod-
els. One model, and hence two of the data sets, is purely deterministic
(and chaotic). The other four models, and hence eight of the data sets,
are stochastic processes, in which the randomness was produced by Monte
Carlo methods. One of the stochastic processes was linear, while the other
three were nonlinear, but not chaotic. The data were generated at Wash-
ington University in St. Louis, see http://wuecon.wustl.edu/~barnett/.
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Notations

The following notations are used

1. T denotes a row vector having all ones in its coordinates, i.e.,
1=(1,1,...,,1) with appropriate dimension.

2. Capitals X, Y, Z... stand for random variables.

3. Subscripting. Put (1:n) = (1,2,...,n). The vector (X1, X2,..., Xn)
will be denoted by X(1.,). In general if the subscript is a set (or-
dered) of natural numbers, say a(.,) = (a1,a2,...,@,), then Xo
denotes a vector with components indexed by the elements of that
set, i.e. (Xa,, Xay, - Xa,). In general if the subscript is a set (or-
dered) of natural numbers, say K = {a,,ay, ..., an}, then Xk denotes
a vector with components indexed by the elements of that set, i.e.

(Xa,, Xay, s Xa,)- It sholuld cause no confusion to denote Xk also
by Xa ...

4. Let K denote some set of index sets, i.e. L = {K, M, N} where say
K =aqk,), M =Dba:ky). N = ¢(1:ky)- The X denotes the vector of
products with respect to the subsets of K, e.g.,

k1 k2 k3
X = (J] Xay» [T X5 [T Xe)-
j=1 j=1 j=1



Xviil

10.

11.
12.

The product and the sum associated with an index set have the fol-
lowing shorter notation

n n
HXa(I:n‘- - H Xaj~ ZXa(,:"; = ZXaj.
7=1 j=1

Q(1:n), T(1:n)) denotes the usual inner product of vectors, i.e.,
(1in)s L(1:m)

n

(a(lzn)ur(l:n)) = Zak-rlv

k=1

Repetition. A vector having the same components,

(Xl, X1,X2, XQ, Xz) = X(l,l,2,2,2)v say, will be denoted by X(l;g)[gyg},
as well. In general, the set with natural numbers in brackets | |
denotes the number of the same components of the previous ordered
set. In that sense

(X1, X1, X2, X2, X2, X3, X3) = X(1,1,2,2,2,3,3 = X(1:3)[2,3,2)-

Exponent.

n
tiyto,ntn) oyl t
(6, X X)) = i = T
k=1
i.e., the exponent of a vector by a vector with the same dimension is
the product of the exponents, following this role

n

r1 o (7sPpnns?) r
Xty = Xmy " =11,_, X&-

Permutations. 9P,, denotes the set of all permutations of the numbers
(1:n)=(1,2,...,n),if p € P, then
p(:n)=(p(1),p(2),...,p(n)).

Partitions. The set of all partitions of the numbers
(1:n)=1(1,2,...,n), is denoted by Pamy, if £ €P(1.n) then

L ={K, K,,... K} such that K|, K»,... , K} are disjoint and
UK; = {1,2,... ,n}. In particular the set of all partitions into pairs
of the set (1,2,...n) is denoted by ’P(Hl:") and the set of all partitions
having one or two elements is P(I iﬂ e KT and K" are the elements of

1 :
P(Hl:n) and P(f{ n)» Tespectively.
Gaussian characteristic function is denoted by W.

Gaussian distribution function is denoted by G.
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Xix
Complex Gaussian stochastic spectral measure is denoted by W.
Spectral measure is P.
Cumulant spectral density is denoted by S.
L_(’If and ié, are Hilbert spaces.
Transfer functions are denoted by h, g... .
B is the Borel o-algebra with elements A, B, ... .
H,, is Hermite polynomial of order n.

X is Gaussian system if any subset of the elements of X' contains
jointly Gaussian random variables.

£2(X) is the Hilbert space of all random variables depending on the
Gaussian system X, see page 7.

22. L?(X) is the Hilbert space generated linearly by all possible Hermite

polynomials with order k of the Gaussian system X

The time shift operator Ug for a stationary X;, is defined by the
equality UsX; = X, for every s,t and is extended to a group of
unitary transformations over L2(X).

The covariance and the second order cumulant of random variables
Zy, Z5 with complex values are different

Cov (Zl,ZQ) — E(Zl - EZl) (Z2 - EZQ),
Cum(Zl,Zz) = E(Zl - EZl) (ZQ — EZz)

mod (1) denotes a relation on real numbers such that =y mod (1)
if the fracional parts of x and y are equal.

61 (+) is Dirac delta with periodic extension of mod (1), called also
Dirac comb.

Ogy is Kronecker delta.

. xa(w) =1if w € A mod (1) and zero otherwise.

The Fock space is denoted by Exp (fé) :

75 = - n )
2 = ™k and by #8 above 28-;1) — 2T gk
wy, t € Z, is standard Gaussian white noise, e.g., w; is an independent

Gaussian series with mean 0 and variance 1.
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32.

33.
34.

35.

36.

37.

38.

N (1, 0?) denotes the family of Gaussian random variables with mean

p and variance o2

The semifactorial is (2k — 1)!! =1-3-5---(2k —1).

Symmetrized version of f, is defined by

sym fn (W(lzn)) = f;? (wl,wz, btz \wn) = }; ((4)1“,‘_),27 o »wn)
1
== D7 o () Wpi@ W)
PER,

Symmetrized version by the variables w(y.,), where n < m, of a
function f,, of variables w(;.,) is denoted by sym f, and defined by

@Wiim)

f:ﬁ (wlvwzv"' vwﬂ) = S.Vln fn (wlsw27"' 1wn)

Wil:m)

1
== Y I (@) @) @)
TPER,,

f(ul, ug) is the Fourier transform of f(z1,x2), i.e.,

f(ul‘u2) = ﬁ /_OC /_(x f(ay, xo)exp{—i(x1u1 + x2usz)} dzq day.

Restricted Fourier transforms of cumulants of jointly stationary time
series X;,Y:, and V;

S)Jz,Y (2) = Z Cum (X4, Y:) 277,

S

[}

M2
[M)8

S¥yv(z,22) = Cum(X ekt Yerr, Vi) 2y P25

>r
Il
-
Il

1

S5™ denotes the nt" order convolution of So x, 1e.,

2 n—1
Sy )= [ S T Shox r e,
Jio, )t P

X S‘Z,X (wn) dw('Z:n)' (1)
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