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PREFACE

This book has been written, first of all, to serve as a text for a
one-semester advanced undergraduate or beginning graduate
course in nonlinear differential equations. However, since it was
prepared with the needs of the applied mathematician, engineer,
and physicist specifically in mind, it should also prove useful as
a reference text for scientists and engineers working in applied
fields. This is not to suggest that the book is anything but a
mathematics text; rather, it is to suggest that we must recognize
and then compensate for the limited mathematical experience
of many who today encounter and ponder nonlinear problems.
There is nothing new in this approach, but it is seldom seen in
mathematical works written for those with the high level of
knowledge and achievement expected here. For example, it may
appear inconsistent to place side by side elementary discussions
of standard mathematical notation and advanced analytical
téchniques, but the alternatives are either to accept a mathe-
matically unsatisfactory and incomplete job or to continue to
deny a vast audience the genuine fruits of this vital and dynamic
subject. '

It has been the intention of the author to provide for rapid
(though modest) contact with a majority of the mathematically
significant concepts of nonlinear differential equations theory
without overburdening the reader with a lot of loose ends. A
concerted attempt has been made for brevity of treatment (con-
sistent with mathematically sound principles) and simplification
of concepts. Thus, it has been the further intention of the author

to err (if he must) by recording all too little, rather than too
A2
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much, and by oversimplifying, rather than overgeneralizing.
The resultant shortcomings of this approach may, perhaps, be
compensated by the multitude of exercises which form an integral
part of the text. These contribute limited amounts of auxiliary,
though sometimes essential, material, prepare the reader for
subsequent work, and provide a running criticism of the text
material itself. For the student, the last function of the exercises
is by far the most important, and it is questionable if one can
appreciate the real flavor of the work without careful note of this
fact. Examples appear throughout the text and in the lists of
exercises. These also contribute additional material, but more
often than not, serve to illustrate the theorems, important con-
cepts, or merely the notation and, in doing so, provide a link with
more practical aspects of the theory. Chapter 8, which consists
entirely of examples, stands in marked contrast to the theoretical
pattern established in the earlier chapters. The asymptotic
method illustrated therein is eminently practical and should dis-
pel the notion that a variety of specialized techniques is required
for treating traditional problems relating to linear and nonlinear
oscillations. '

The chapter and section titles are a sufficient indication of the
total content. Though the chapter material represents a con-
nected account of many areas of interest, the chapters themselves
are not significantly interdependent and represent more or less
distinct blocks of the total structure. A well-informed teacher
may readily expand the content of any one chapter, drop or
replace a chapter which, for example, might represent old mate-
rial for a select audience, or insert a particular text chapter into
another course or seminar. Only a few of the more pertinent
references are given throughout the text. The list of general
references includes excellent bibliographical sources, as well as
other related information. , (

The starting point of this book was a set of lecture notes pre-
pared for (and during) an internal seminar held at The Martin
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Company, Denver Division. I wish to record here my apprecia-
tion to The Martin Company for providing me with the oppor-
tunity to participate in this seminar and with excellent secre-
tarial help during the prepafation of the lecture notes. I should
like to thank John E. Fletcher and Steve M. Yionoulis for valua-
ble assistance in the preparation of the manuscript and Mary
Sue Davis for a superb job in typing the manuscript. As a
student, I was fortunate to inherit from my teachers, especially
Ky Fan, Joseph P. LaSalle, Karl Menger, and Arnold E. Ross,
some of the rich traditions and finer things in mathematics. I
sincerely hope that through this book I will share with future
students at least a small part of this inheritance.
Raimond A. Struble
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Chapter 1

PRELIMINARY CONSIDERATIONS

1. Linear Second-order Equations

Consider the differential equation

L)
dt?

+x=0 1)

which leads to the simple harmonic motion

z = Asin(l+ @) 2

for arbitrary (conmstant) A and ®. Let us introduce a second

variable

y=-3—f=Acos(t+fI>) @
so that (2) and (3) together define the circle z* 4 4 = A% in
parametric form with ¢ as parameter. The solution in the zy
plane is viewed, therefore, as a circle of radius | 4| centered at the
. origin. )

A solution curve, viewed in the xy plane, is called a irajectory,
and the zy plane itself is called the phase plane. A trajectory is
oriented by the parameter ¢, and the direction of increasing ¢ is
indicated as in Iig. 1 by arrowheads. Note that from the defini-
tion of y, the arrowheads necessarily point toward positive z above
the z axis and toward negative x below the z axis. A clockwise

1
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motion is thus indicated. The trivial solution of (1) corresponds
to the origin x = 0, ¥ = 0 and is called a s¢ngular solution or
pont solution. It represents a position of equilibrium. In this
case there is but one position of equilibrium, and it is called a
cenfer, since all near trajectories are closed paths. Closed paths
generally (Lbut not always) correspond to periodic solutions, while
periodic solutions always lead to trajectories which are closed
paths.

[
N

Figure 1 Figure 2

N
VARG,

Let us now consider the trajectories defined by the equation
dx dx .
= T k o ter=0 “)
where each of k and w is a constant. Without damping, ie.,
k = 0, each trajectory of (4) is an ellipse (see Fig. 2). However,
with damping, the trajectories are modified considerably. The
nature of a solution depends upon the characteristic roots,

. 7INE 7N

We shall examine the various cases in turn.
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Cage 1: w? > (k/2)2

Let wi = Vw? — (k/2)* so that A\ys = —k/2 £ iw.. The
general solution is well known, namely, x = Ae*/? gin (wy¢ + ®)
for arbitrary A and ®. In this case

Yy = — —’29 Ae®? gin (wit + P) + wide ™2 cos (wil + @)

Let us introduce new dependent variables
U = wx = wrde 2 gin (w3t + P) (5)

v =y -+ gx = wide™? cos (wit + P)

If we interpret the solution as a trajectory in the uv plane, we
obtain a spiral. Indeed from (5) we have

p? = u? 4 p? = @ 2A%*

and {? = tan (et + ®)

Thus, for example, if k > 0, p? decreases monotonically as ¢
increases, while. the ratio u/v varies periodically with ¢ (see
Fig. 3). Again the motion is clockwise, although in this case v

AT e e “
Q arctan eyl

Figure 3
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is not du/dt. In fact, u and v satisfy the equations

k
Z—:‘=-—§u+wxv
6
dv _ __I_Cv ' ©)
- T3

For & < 0, the trajectories spiral clockwise away from the origin. |
We note that the uv origin corresponds to the xy origin, i.e., the
position of equilibrium. It is called a focus since near trajectories
spiral either to or away from it.

#Fhis rather simple picture of the trajectories has been obtained
through the use of the transformation (5). The latter is a linear
transformation of the form

% = buzx + by

v = bz - baay @
If the determinant
bu by

b2l b22

is different from zero, then the mapping (7) is a one-to-one map-
ping of the zy plane onto the wv plane. Such transformations
have the following important properties:

- a. The origin maps to the origin.
b. Straight lines map to straight lines.
¢. Parallel lines map to parallel lines.
d. The spacings of parallel lines remain in proportion.

These hold either for the mapping from the zy plane to the wv
plane or for the inverse mapping from the wv plane to the xy plane.
Thus an cquilatera! rectangular grid work will, in general, map
onto a skewed grid work with different but uniform spacing in
each of the two skewed directions. Many qualitative features
of the trajectories are invariant under such transformations.
For example, the logarithmic spiral in TFig. 3 is the image, under
the linear transformation (5), of the distorted spiral in Fig. 4.
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Some quantitative information may be obtained as follows.
Let us consider the linear transformation

U = o

v=—2k-:a:+y ®)

as a mapping from the two-dimensional xy veclor space onto the
two-dimensional wuv vector space. Using rectangular cartesian

¥

)

k x
\ arctan E(—w‘l—:ﬁ

Figure 4

(u,0) =(ex,ay)
(x,5)

Figure 5

representation, as in Fig. 5, each zy vector may be identified with
its end point (2,y) and its image vector under the transformation
(8) by the end poir;t (u,v) in the uv plane. We ask the following
question: Are there any vectors in the xy plane which do not
rotate under the transformation (8)? Such vectors are called
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eigenvectors of the linear transformation. If (u,) is parallel to
(z,y), the ratios v/u and y/z are equal, or what is the same, there
exists a number «, called an eigenvalue of (8), for which

U = a

, (X
v = ay
The eigenvalue itself is a “stretching” factor, since the length of
the wv veector is |o| times the length of the corresponding zy
vector. But from (8) and (9) we conclude that necessarily

Wik = ax
L
2 24 Yy = ay
or, what is the same,
(w1 — @)z =0
0
8 o [} — oy = 0 Wy
In general, there are two nontrivial solutions of (10):
o =1 %= 0 (y, arbitrary) (11)
k )
a = oy ‘—,x+(1-—w1)y=0 (12)

corresponding to the two eigenvaluese = 1, a = w1. fwr =1, .
(11) and (12) are one and the same. More generally, the first
asserts that vectors parallel to the y axis are not rotated, while the
second asserts that vectors with slope equal to k/2(w1 — 1) are
not rotated. Further, since o = 1in (11) and a = w; in (12}, we
conclude that the lengths of the vectors parallel to the y axis
remain unchanged while the lengths of the vectors with slope
equal to k/2(w, — 1) are stretched by the factor w;. Thus the
distorted spiral in Fig. 4 is obtained from the logarithmic spiral in
Fig. 3 by moving the intercepts with the line ©» = [k/2(w, — v
{shown for w;, < 1) outward in proportion to 1/w;, while leaving
the intercepts on the v axis as they are.
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Jask 21 (k/2) > w?
Let us write the single equation (4) as the system

Z; (13)
s e ky

I
l

In this case, we seek a linear transformation (7) sueh that the
system (13) becomes

du~au
P
dl'“au 4
q T

for-suitable constants ai, as. The system (14) is “uncoupled”’
and the solutions may be obtained immediately.
Applying the transformation (7) to (14) and using (13), we
obtain '
buy + bus(—w?z — ky) = a1(buz + biey)

15
ba1y + baa( —w?x — ky) = ax(basx 4+ bay) a5

If these equations are to hold identically in 2 and y, then the total
coefficient of each of # and y must vanish. We consider, there-
fore, the two sets of equations

- wzblz = axbu

16
bn = kbu = axbm ( )
and —w%ey = ashy
1
bzl s kb‘zz = a‘zbzz ( 7)
The first of (16) may be written
bip . '
and the second then becomes
a ai?
1+ k;’—; = — ;‘; (19)
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Similarly, the two equations of (17) yield

bas as '

bt {25
and 1+kg‘:=—%2; (21)
Equations (19) and (21) are merely versions of the characteristic
equation A? 4+ kX 4 »? = 0. Thus each of o; and a» must be a
characteristic root.

With «; and «; determined, Eqs. (18) and (20) determine the
ratios biz/bi and bss/bsi. For convenience, we may choose
bi1 = ba; = w?, and the desired linear transformation may be
expressed

U = wlr — ANy

22
v = w2 — Ay G2

We note that the determinant

is different from zero, since A\; 5 A\,. Thus (22) is nonsingular,
In the new variables, the solutions are given by (14) with
ay = A and @z = Ay We have
U = UoeM!
23
v = poettt @3)
for arbitrary uo and vs. For k > 0, both characteristic roots are
negative and so each trajectory in the uv plane approaches the
origin as { — «. Further, the ratio

¥ = Y0
v Vo
. 3
approaches zero as {— o, since \; — Ay = —2 V' (k/2)? — o

Thus the trajectories are asymptotic to the » axis. From (23)
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we have

w (ugM ug

™ (Vo™ t)™ T o const
so that the wuv trajectories lie along the curves'u = (const)v /.
The singular solution in this case is called a node. (All near
trajectories tend to or away from a node without spiraling.) For
k < 0, the solution curves are somewhat similar to those illus-
trated in Fig. 6. However, since both characteristic roots are

Figure 6

then positive, the arrows must be reversed and the labels on the
two axes must be interchanged.

The trajectories in the phase plane are also qualitatively similar
to those shown in Fig. 6 but will appear to be rotated and
stretched. The eigenvalues of the transformation (22) are roots
of the equation

w? — A — A

| w2 —Ap—
7
and the eigenvectors (i.e., invariant directions) could be obtained

as before. However, in this case it is probably more important
to know what happens to the u axis and v axis under (22). The

= >\2 + (XQ - w2)>\ + ()\1 e )\2)(.02 = 0



