213 *g 1290y PUe qres ‘H BuIqes
- IVIIOLAL VY

TP32
S 16

8464575

.
s
- ;wfwwwwww
.

o

.

. - .

.
%%mwmmﬂmw
.

-
G

COMPUTER

-2

EHO 202

Library of Congress Catalog Card No.

IEEE Catalog No.
Order No.

82-84689

@@IEEE COMPUTER SOCIETY

456

%98y

A CENTURY OF ELECTRICAL PROGRESS

1854

taway, NJ 08854

1scal

IEEE Service Center
445 Hoes Lanes

P

CA 90080

Worldway Postal Center
Copyright © 1983 The Institute of Electrical and Ele

IEEE Computer Society
PO Box 80452
Los Angeles,

ilable from:

ies ava

l cop

itiona

Add

(58]

(5]

i

—

o

Z

o

&

>

5

Z

3]

=

@

- —

g TN
4 " & e, an
(~Tane T
[@
uﬂvq R
{ &1 “gh, IR
‘g T
>

mi
J_‘ID

S

‘N

12

N

846457 5

My ~ A3 A
i€ AdA programoi; g lancsuace

Copyright and reprint permissions: Abstracting is permit-
ted with credit to the source. Libraries are permitted to
photocopy beyond the limits of US copyright law for
private use of patrons those articles in this volume that
carry a code at the bottom of the first page, provided the
per-copy fee indicated in the code is paid through the
Copyright Clearance Center, 21 Congress Street, Salem,

MA 01970. Instructors are permitted to photocopy
isolated articles for noncommercial classroom use
without fee. For other copying, reprint, or republication
permission, write to Director, Publishing Services, IEEE,
345 E. 47 St., New York, NY 10017. All rights reserved.
Copyright © 1983 by The Institute of Electrical and
Electronics Engineers, Inc.

Dedication

To our respective spouses,
Ihsan Saib and Sharon Fritz.

Acknowledgments

Thanks go to the authors of early
papers on Ada, who have made this volume possible.
Thanks also go to Beverly Burgess for manuscript preparation, and
to Christina Taylor for her careful editing.

vii

Foreword

This Ada tutorial brings together many of the major
early papers on the Ada* programming language and its
environment. It also contains a number of tutorial
papers that describe several of the most important
aspects of the language, notably those that apply to real-
time embedded systems. It is this area of computer ap-
plications that has suffered from a lack of a high-level
language; and this is just the area Ada was designed to
address.

We have gathered various viewpoints on Ada and its
uses, including those of some of its harshest critics. The

*Ada is a trademark of the US Department of Defense (Ada Joint Program Of-
fice).

ix

volume also contains papers that had significant in-
fluence on the designers of Ada, a comprehensive bibli-
ography, and a glossary of Ada terminology.

Most of the papers in this collection use examples
based on the July 1980 Language Reference Manual.
With a few exceptions, the papers will remain valid for
the 1982 Language Reference Manual.

Sabina H. Saib
Robert E. Fritz
August 1982

DEDICATION AND ACKNOWLEDGMENTS

PART I: THE HISTORY AND CURRENT STATUS OF ADA

8464575

TABLE OF CONTENTS

FOREWORD s 5 601+« + e mnsss 55 5+ s mwsimonn s 55 e s s e 5 5 oo K g dtrs

VTN e e a e S S s a S s ettt e 1

The U.S. Department of Defense Common High Order Language Effort

William A. Whitaker (ACM Sigplan Notices, February 1978, pp. L) 7
DoD’s Common Programming Language Effort

David A. Fisher (Computer, March 1978,pp.24-33) ..o 18
Ada: A Promising Beginning

William E. Carlson (Computer, June 1981, PP A3 18] se s s st bt aEae ey S s e x e 28
From Pascal to Pebbleman. . .and Beyond

Robert L. Glass (Datamation, July 1979, L B 31
What is Ada?

Ronald F. Brender and Isaac R. Nassi (Computer, June 1981, pp. 17-24). 36

PART II: THE ADA ENVIRONMENT

OVEIVIEW - 43

The Ada Programming Support Environment

Douglas Locke (IBM Software Engineering Exchange, October 1980, PP.21-22) 46
The Ada Environment: A Perspective -

Vic Stenning, Terry Froggatt, Roger Gilbert, and Ellis Thomas (Computer, June 1981, pp. 26-36) 48
Requirements for an Ada Programming Support Environment: Rationale for Stoneman

John N. Buxton and Larry E. Druffel (Proceedings, Compsac 80, October 1980, pp. 66-72) 58
Making Tools Transportable

SOBRRELISEI 5 155 s £ 5 6885344 BB Y €54 e s £ 5B s g e e e 65

PART III: ADA IMPLEMENTATIONS

QYEIVIEW e 69

The NYU Ada Translator and Interpreter
Robert B. K. Dewar, Gerald A. Fisher Jr., Edmond Schonberg, Robert Froehlich, Stephen Bryant,
Clinton F. Goss, and Michael Burke (Proceedings, Compsac 80, October 1980, pp. 59-65) 72

The Charrette Ada Compiler
Jonathan Rosenberg, David Alex Lamb, Andy Hisgen, and Mark Sherman (Proceedings of the
ACM Sigplan Symposium on the Ada Programming Language, Sigplan Notices,
November 1980, pp. PBY 79

The Ada Language System
Martin 1. Wolfe, Wayne Babich, Richard Simpson, Richard Thall, and Larry Weissman
(Computer, June 1981, PP 3T45) e e e et e e 89

Ada for the Intel 432 Microcomputer
Stephen Zeigler, Nicole Allegre, Robert Johnson, James Morris, and Gregory Burns (Computer,
G IIBL, PP AT88 s o mnenin e pmmagnne e o e koo 98

The Ada Compiler Validation Capability
John B. Goodenough (Computer, June 1981, T 108

PART IV: ADA DESIGN METHODOLOGY AND LANGUAGES
OIVETVIEW: 45 ¢ 5 5 & 60506 5558 85 5 5 § & 5555 508 Srme s n o mom o m o msmi s o o v wom e oe o 0 8 5 & 5 5 o806 Bl s 5 5 & & £ e e e

Ada as a Design Language
D. W. Waugh (IBM Software Engineering Exchange, October 1980, pp. 8-12). .. .o oo e e,

Ada for Design: An Approach for Transitioning Industry Software Developers
Hal Hart (Proceedings, NSIA Software Group Conference, October 1981, pp. 1-8) e

Modularity and Data Abstraction in Ada
J. T. Galkowski (IBM Software Engineering Exchange, October 1980, pp. 13-17) .. oo

Solve Process-Control Problems with Ada’s Special Capabilities
Grady Booch (EDN, June 23, 1982, pp. 143-152) . . . oot et e e e e e e e e e

An Ada Program Design Environment
N G 1 P

PART V: ADA OVERVIEW
OVEIVIBW i m5 5 5 8 5 268 8 mmmmm = o o o veonmmm o s 3 5 o0 8 1005 5 5 5 585 0o e n e e e e o e o e

An Overview of Ada
John G. P. Barnes (Software—Practice and Experience, November 1980, pp. 851-887)o i i

A Self-Assessment Procedure Dealing With the Programming Language Ada

Peter Wegner (Communications of the ACM, October 1981, pp.647-677) . . oo
Types

John Nestor (Using Selected Features of Ada: A Collection of Papers, CENTACS, US Army

Communication-Electronics Command, March 1981) oo
Ada Packages

Sabina H. Saib (Proceedings, Fifteenth Asilomar Conference on Circuits, Systems, and Computers,

November 1981, pp. 386-389)ttt
The Use of Ada Packages

A. N. Habermann (Using Selected Features of Ada: A Collection of Papers, CENTACS, US Army

Communication-Electronics Command, March 1981)o

Tutorial Material on the Real Data-Types in Ada
B. A. Wichmann (US Army Final Technical Report, January <

PART VI: REAL-TIME PROGRAMMING
O

Low Level Language Features
Dewayne Perry (Using Selected Features of Ada: A Collection of Papers, CENTACS, US Army
Communication-Electronics Command, March FOBL) s iw wwiais 6 5 5 5. wmommmmin o n e s ceie o i S8 S 5 3 8w

Evolving Toward Ada in Real Time Systems
Lee MacLaren (Proceedings of the ACM Sigplan Symposium on the Ada Programming Language,
Sigplan Notices, November 1980, pp. 146-155)ouuuiuiramn e o0

Tutorial on Ada Tasking
Stephen A. Schuman (Using Selected Features of Ada: A Collection of Papers, CENTACS,
US Army Communication-Electronics Command, March 1981) oo,

Tutorial on Ada Exceptions
David B. Loveman (Using Selected Features of Ada: A Collection of Papers, CENTACS, US Army
Communication-Electronics Command, March L e

PART VII: ADA APPLICATIONS

L0 0 T 1 433
Ada—The Latest Words in Process Control

Dennis Cornhill and Maureen E. Gordon (Electronic Design, September 1, 1980, pp. 111-116) 435
Ada Defines Reliability as a Basic Feature

David Loveman (Electronic Design, September 27, 1980, pp. 93-98) . ..o i ittt e 441
Subprograms and Types Boost Ada Versatility

David Loveman (Electronic Design, October 25, 1980, pp. 153-158) ..ottt e e e e e e e 447
Ada’s Knack for Multitasking Benefits Process Control

David Loveman (Electronic Design, December 6, 1980, pp. 101-115)ttt i it e e i e 453
Linked Ada Modules Shape Software Systems

Kenneth L. Bowles (Electronic Design, July 22, 1982, pp. 117-126)o v it e 458
Ada and Software Development Support: A New Concept in Language Design

Richard J. LeBlanc and John J. Goda (Computer, May 1982, Pp. 75-82) « « v oot e it et et e e e e 467

PART VIII: CRITICISM OF ADA

OVEIVIEW v s ¢ 5 & 605 o s mames 5 5 8 £ 0 0 55 M55 5 5 5 £16505 568805 5 5 s nomsm o mm s as o o o aimimimm e ore s s s o e wn 475
Flight Languages: Ada vs HAL/S

Bruce Knobe (Journal Guidance and Control, January-February 1981, pp.35-40) oo, 476
Scaling Down Ada (Or Towards a Standard Ada Subset)

Henry F. Ledgard and Andrew Singer (Communications of the ACM, February 1982, pp. 121-125) 482
The Emperor’s Old Clothes

Charles Antony Richard Hoare (Communications of the ACM, February 1981, pp.75-83) 487
Letter

Larry E. Druffel (Communications of the ACM, June 1982, pp. 404-406)ouuuuueunnnnn... 496

PART IX: INFLUENCES ON ADA

OV TV W & i 499
Distributed Processes: A Concurrent Programming Concept
Per Brinch Hansen (Communications of the ACM, November 1978, pp.934-941) 500
Communicating Sequential Processes
Charles Antony Richard Hoare (Communications of the ACM, August 1978, pp. 666-677) 508
On the Criteria to be Used in Decomposing Systems into Modules
David L. Parnas (Communications of the ACM, December 1972)o oo 520
PART X: GLOSS A RY . . o e 526
PART XI: BIBLIOGRAPHY e e e e e 529
AUTHORBIOGRAPHIESo e e e e e e e, 538

Part I:
The History and Current Status of Ada

As of 1982, Ada is still in the early stages of its evolu-
tion. The design is substantially fixed, implementations
are progressing, and applications are beginning to ap-
pear. Numerous studies have sought the most effective
methods for using Ada in all kinds of applications. Ada
is ready to bloom, awaiting only the availability of com-
plete, production-quality compilers.

Milestones

There have been three major milestones in the design
of the Ada language:

¢ the original features of the language (June 1979);

e the revised Ada of July 1980;

e and the clarifications and small revisions of late
1982, which arose from the ANSI standardization
process.

Standards. The July 1980 revisions were substantial,
resulting from nearly a year of review and comment by
thousands of people in industry, academia, and govern-
ment. When the July 1980 version was submitted for
ANSI standardization, many ANSI canvassees found
ambiguous or inadequately explained areas in the
language. These problems must be answered before the
language can be an accepted standard, and this will re-
quire a revision of the language reference manual.
When the revisions are complete, a new standardization
canvas will be made and Ada will become an ANSI stan-
dard.

Considerable foreign interest in Ada has prompted
submission of the language design for International
Standards Organization approval. Though the ISO
standard will be the same as ANSI, the ISO process will
probably require a formal definition and will therefore
not be complete until 1984 or 1985.

Enforcement. Standards on implementations of the
language are enforced through the Ada Compiler Vali-
dation Capability, or ACVC, and through Ada’s trade-
marked name. Through the Ada Joint Program Office,
or AJPO, the US Department of Defense has registered
Ada as a trademark. Only compilers that pass the
ACVC tests will be certified as true Ada and allowed to
use the name, and only officially certified Ada systems
will be allowed on DoD projects. The goal of ACVC

EH0202-2/83/0000/0001$01.00 © 1983 IEEE

certification is to prohibit subsets and supersets of the
language, which cause problems in transporting pro-
grams from one system to another.

Implementation

Both DoD and private enterprise are funding im-
plementations.

DoD-funded implementations. The DoD is funding
two major Ada implementations: the Army Ada Lan-
guage System, or ALS, and the Air Force Ada Inte-
grated Environment, or AIE. A preliminary version of
the ALS, written in Pascal, is scheduled for completion
in late 1982. The final ALS—written in Ada—is due in
December 1983. The AIE should be complete in 1984.
Though the AIE and ALS represent different ap-
proaches to organizing Ada’s supporting environment,
both will have certified production compilers.

DoD

AIR FORCE

C] |
v]] |]

ACVC
(SOFTECH)

KIT I KITIA I

AIE
(INTERMETRICS)

ALS
(SOFTECH)

Figure I-1. Major Dod Ada projects.

The major DoD-sponsored projects, shown in Figure
I-1, are complemented by an effort sponsored by the
Navy. The KAPSE Interface Team, or KIT, and the
KAPSE Interface Team for Industry and Academ-
ia—KITIA—seek to ensure interoperability and trans-
portability of Ada tools among Ada environments, in-
cluding AIE and ALS.

Privately Funded implementations. Private enterprise
has been quick to recognize the value of Ada and its im-
portance in the DoD. Several implementation efforts
are underway; a remarkable ‘number are based on
MiCroprocessors.

Originally, Ada compilers were considered beyond
the capability of microprocessor-based systems, but

Table I-1.
Major commercial Ada compiler efforts.

DEVELOPER PROJECT COMPLET!ON TARGET
BELL VAX/UNIX* COMPILER 1982
LABORATORIES
BURROUGHS GENERATE DIANA FROM 1982
ADA
CONTROL DATA CYBER-170/N0OS 1985
CORP. COMPILER AND PARTIAL
ENVIRONMENT
DIGITAL VAX/VMS COMPILER 1983
EQUIPMENT CORP.
INTEL iAPX 432 CROSS 1981
COMPILER OPERATING
ON VAX/VMS
1982
TELESOFT MC-68000, 8086, VAX,
IBM 370 COMPILERS
WESTERN DIGITAL ~ SUPERMICRO 1600 1982
ZILOG Z-8000 COMPILER 1983

*Unix is a registered trademark of Bell Laboratories.

Intel, TeleSoft, and Western Digital, among others, are
developing just such systems. The Intel compiler system
uses the iIAPX 432, whose hardware closely supports
Ada. Telesoft is building compilers for systems based on
the Motorola MC68000 and the Intel 8086 and 8088; the
Telesoft Ada system is even available for the IBM Per-
sonal Computer. Western Digital is producing Ada for
its series of microprocessor-based systems.
Information on implementations of Ada by manufac-
turers of minicomputers and mainframes is sparse, since
most large manufacturers maintain some security over
the status of such projects to maintain a competitive
edge. But the presence of manufacturers’ represen-
tatives at Ada-related meetings and conferences suggests
that major implementation efforts might be underway.
Table I-1 shows some important commercial projects
and milestones for Ada compilers. The table gives only
an overall view of where Ada is going; it does not
necessarily reflect specific delivery dates or availability.

Implementation principles. Ada compilers are being
implemented according to modern principles of com-
piler construction, which organize compiler activities
into distinct stages. The grammar of Ada can be made
LALR(1), so syntax analysis can be done according to
formal, but easily implemented, procedures.

Semantic analysis results are currently in the form of
the Diana intermediate language. Use of an interme-
diate language in the compiler makes rehosting the com-
piler easier, since the syntax and semantic analysis
stages are free of host-specific information. Code gener-
ation for the host machine is, by necessity, host-depen-
dent; therefore, it uses the intermediate language to pro-
duce executable instructions.

Diana is based on two earlier Ada intermediate lan-
guages, TCOL Ada (by Carnegie-Mellon University)
and Aida (by the University of Karlsruhe, Germany).

2

Diana incorporates features of both, along with some
new ones.

Growing support

Support for Ada continues to grow. Within the DoD,
support has become policy as the military services have
issued memoranda on Ada use schedules and plans. Re-
quests for proposals that require Ada in some way on
DoD projects are now appearing.

Outside the DoD, organized support, in the form of
the ACM Sigplan AdaTEC group, continues to grow
rapidly. This is an active national organization that
meets several times each year and now has several local
chapters. Many commercial Ada courses and textbooks
have appeared and done well.

The future of Ada is bright. Technical issues are being
resolved, implementations are underway, approaches
for applying Ada are being developed, and official and
unofficial policy and support are growing. The con-
tinued success of Ada depends on continued official
support, the quality of initial applications, and the
usefulness of the technical features of Ada.

Problem areas

Ada has its faults, problem areas, and critics. Many
of its supposed language faults are matters of opin-
ion—one person’s fault is another person’s feature.
Problem areas generally result from inadequate
specification or explanation in the original design.
These are being resolved, though with considerable ef-
fort. Meaningful criticisms center on the reliability and
efficiency of the language and its compiler; they cannot
be answered without evidence based on substantial use
of Ada. Other criticisms, based on emotional or per-
sonality reactions, deserve no response.

Issues facing Ada

Ada is a developing, high-visibility program within
DoD. As such, it faces several technical and political
questions. While it is unrealistic to expect the chosen
answers to these questions to satisfy everyone, one can
expect reasonable compromises to be acceptable to most
Ada users. A goal of the program is continued respon-
sibility to all Ada users. This goal is being reached
through cooperation with such interest groups as ACM
Sigplan AdaTEC and the JOVIAL/Ada Users Group.
As experience further defines the needs of the Ada com-
munity, one would expect changes, within certain limits,
in official Ada program policy.

Definition and standardization. Definition and stan-
dardization of the language are immediate issues. In
1981, the Language Reference Manual, or LRM, was
submitted to ANSI for consideration as an ANSI stan-
dard. Part of the ANSI process is a canvass of members
of the appropriate technical community on complete-
ness, accuracy, and acceptability.

In the preliminary canvass on Ada, the LRM was con-
ditionally accepted as a standard definition of the
manual. Before the LRM could be resubmitted to ANSI
canvassees, the questions and objections raised in the
preliminary canvass had to be answered. Many of its
discrepancies were due to technical deficiencies in the
manual; several sections provided only a sketchy de-
scription of language features. These areas were
amended to resolve issues of semantics.

Ambiguity, paradox. The original language descrip-
tion did not discuss interaction of some parts of Ada.
Review by many thousands of people revealed some am-
biguities and paradoxes, which had to be resolved.
While this required detailed changes in several areas, it
did not alter Ada’s general character or structure. All
changes were finally approved by Jean Ichbiah, who
headed the original design team. This process has not
been without controversy.

Refinement ended in July 1982. The July 1982 version
of the Ada Language Reference Manual, available from
AdaTEC, is the current standard. LRMs dated July or
November 1980 or earlier are obsolete and substantially
different. The 1982 Ada LRM is being submitted to the
ANSI canvassees for approval by the fall of 1982.

Standardization within DoD. Ada is already standar-
dized within DoD as MIL-STD-1815. The defining
document is the July 1982 Ada LRM. Currently, Ada is
listed on DoD Instruction 5000.31, the Interim List of
Approved Languages. This instruction defines which
languages may be used by contractors building em-
bedded systems for the services. Eventually, this list will
be pared to Ada alone, but it currently allows JOVIAL
for Air Force projects and CMS-2 for Navy projects.
The Army is currently specifying Ada for new systems.

ISO standardization. International standardization of
Ada will be done by the International Standards Organi-
zation. The ISO process requires development of a for-
mal semantic description of Ada, which is not yet avail-
able for the 1982 version. The ANSI standard will serve
as the interim ISO standard.

Ada subsets

Standardization has focused on the full language, but
there are several proponents of Ada subsets. They wish
to see a standard subset defined.

Thus far, formally defined subsets are not allowed by
the policies of the Ada Joint Program Office. Imple-
menters have been given a grace period in which to call
an incomplete implementation ‘‘Ada’’ and offer it as a
product. These sources must also declare that they in-
tend to complete their compiler system and submit it for
validation within a reasonable time. Trademark en-
forcement action by AJPO is expected to increase in
1983 as more Ada systems, a standard, and the Ada
Compiler Validation Capability become available.

Subsetting has been suggested to aid teaching, pro-
gramming, efficiency, and to allow use on small sys-
tems. AJPO has established a firm no-subset policy, but

this has done little to quiet the debate. AJPO wishes to
force implementations of Ada to be complete and to
establish the standard as an existing tool. Perhaps this
policy will change once several validated Ada compilers
are available. But it is more likely to remain in force,
since many of the pro-subset arguments are losing im-
pact as more is learned about implementing and using
Ada.

Subsets for teaching Ada. Subsets have been suc-
cessful in teaching aids for many languages, particularly
such large languages as PL/I. Typically, a simple subset
that contains basic types and control structures is
chosen from the whole language and used to teach the
fundamentals of programming. When the student has
mastered the rudiments, other features of the language
are introduced, until the entiré language or a major part
of it is learned.

Ada could be taught with this layered approach, but
the kernel and subsequent layers must be carefully
chosen. Effective use of Ada requires understanding of
certain features, such as packages and extensive typing.
One might be tempted, upon cursory examination, to
leave these to the later lessons. Since, however, program
structure is as much a part of Ada programs as algo-
rithm design, these features should not be treated as
afterthoughts.

An initial teaching subset of Ada might include the
following topics, starting at the primitive level and
working toward the macroscopic features. (The follow-
ing sequence is not necessarily the most effective way to
teach the language.)

(1) Language basics: name conventions, operator
symbols, reserved words, program parts

(2) Types: predefined types, user-defined types, basic
types, numeric and string types, derived types and sub-
types, enumeration types, declaring variables and con-
stants, initializing variables and constants

(3) Expressions and statements: using assignment, if,
case, loops, forming arithmetic and logical expressions

(4) Simple composite types: arrays and records, con-
strained and unconstrained arrays, records with no
discriminant parts

(5) subprograms: functions and procedures, param-
eters, named and positional parameters, scope of
variables, subprograms and system structure.

(6) Packages: data packages; combination packages
of types, variables, and subprograms; packages and
system structure; using packages for encapsulation and
information hiding, private types

These topics would serve as primitive Ada, the first
step in learning the complete language. Topics to be in-
troduced later include the following:

(1) Advanced types: discriminant records, access
types, overloading values and fields in enumeration types
and records, specification types, limited private types

(2) Subprograms: default parameters, recursion,
overloading operators and subprograms

(3) Tasks: rendezvous, instantiation, activation, ter-
mination, protected regions, avoiding deadlock, tasks in
program structure, parallelism

(4) Generics: types, subprograms, generics and over-
loading, use in system design

Of course, these topics only suggest the use of pro-
gressive subsets of Ada for teaching purposes and do
not constitute a complete syllabus. The above organiza-
tion adheres to traditional methods of teaching pro-
gramming languages. Early results indicate that a strict-
ly traditional approach may not provide a full apprecia-
tion of Ada’s software engineering and systems pro-
gramming features.

Subsets for programming efficiency. There are two
approaches to subsetting for programming efficiency;
one is acceptable to AJPO, but the other is contrary to
its policy. The latter eliminates certain features of the
language from the compiler. Tasking and generics are
frequently mentioned potential victims, along with
some of the more complex types.

Tasking is a likely candidate because of fears that the
time and general system overhead required to switch one
task to another on single-processor systems are too
great. In multiprocessor systems, the complaint is that
interprocessor communciation overhead is too great or
that the timing is not precise enough in some situations.
Also, generics are said to be difficult to implement. This
is conjecture at this point, albeit conjecture based on the
experience of similar structures in other languages.
There is probably not enough evidence to justify a sub-
set that lacks these features.

Other suggested subsets would retain tasks or gener-
ics, but reduce their complexity by eliminating some of
their aspects. For example, guarded tasks might be
removed because of the overhead in checking the guard
as it comes into the entry. Again, it is not clear that
surgery of any kind on the language will yield a signifi-
cant advantage. Any subset that eliminates any feature
of standard Ada is contrary to the policy of AJPO and
of questionable gain at this time.

An AJPO-acceptable approach. An approach to
subsetting Ada that is compatible with AJPO
policy—though not, perhaps, with the spirit of the Ada
program—is the imposition of programming style
guides or standards. In this approach, a full Ada com-
piler processes the source code and, perhaps, other tools
verify that the standards are observed. In other words,
restrictions are imposed by fiat rather than by the com-
piler. The use of tasks might be restricted to simple
cases, or the use of exotic types might be restricted. Ac-
cess types and recursion could be avoided in some
embedded applications, to solve the problem of garbage
collection or never-ending recursive calls that occupy all
available memory. For critical applications, this might
be acceptable. But artificial constraints on the Ada style
could prevent creation of a more elegant solution, one
that might save more resources than could the re-
strictions.

Pare it down for micros? Some claim that in order to
take advantage of the inexpensive and abundant micro-
processor, Ada must be pared down. A smaller Ada
would allow development on a microprocessor and effi-

cient operation and lower overhead on a microprocessor
system. This might be true for the eight-bit micro-
processor, because most are limited to a 64-K byte ad-
dress space. Along with slow I/O devices, the 64-K
memory space probably restricts the size of the compiler
to a subset of the language. It is doubtful that full Ada
can be implemented on any of the currently popular
eight-bit microprocessors (Z-80, 8080, 6502, 6809, etc.).

The inability to develop Ada programs on eight-bit
systems should not be particularly disconcerting,
because 16-bit and even a few 32-bit microprocessors
are available. Most of these allow a 20-bit or larger ad-
dress and have a one-megabyte address space. This is
certainly adequate for a full Ada compiler and runtime
support system. Evidence of the adequacy of such
micros is the development of a commercial Ada com-
piler by TeleSoft done exclusively on a Motorola
MC68000 16-bit microprocessor system. This system
was transported to the Intel iAPX86 (8086/8088) and
then to the DEC VAX-11/780 and the IBM 370.

The economy of the 16-bit microprocessor can be
startling. Recent benchmarks have shown that the 68000
can outperform the VAX in many kinds of calculations.
With the 8087 math coprocessor, the 8086 is in the same
league—and faster versions of the 8086 are being in-
troduced.

A typical VAX installation costs $500,000 or more,
while a 68000 system is about $20,000. MC68000
systems have been included in some ‘‘personal com-
puters’’ at a much lower cost. The 8088 is available in
several personal computers. Among them is the IBM
Personal Computer, which has a spot for the 8087 math
coprocessor and costs considerably less than $10,000.
This cost/performance ratio is unequaled by eight-bit
microprocessors or minicomputers.

Thus, it is difficult to make a case for reducing Ada to
fit microprocessors. The current 16-bit generation has
more than adequate performance to host the Ada com-
piler and development system or to serve as the target
system of operational software. As a target, an eight-bit
microprocessor with 64-K memory can probably sup-
port most Ada applications. A microprocessor subset of
Ada is one of the least justified of all proposed subsets.

Ada on small commercial systems

The availability of Ada on MiCroprocessor sytems
gives cause to consider the impact of Ada on the small
business and personal-computer-system market. Most
projections show explosive growth for both in the next
decade.

Most business software for small systems is written in
compiled Basic, interpreted Basic, Cobol, Pascal, or
assembly language. Most software for home systems is
in interpreted Basic or assembly language, with some
Pascal and other languages available. In both markets,
many programmers are self-taught, usually in Basic,
and are often quite arrogant of the supposed power of
their language. The techniques and details of software
engineering of solutions are unknown to many of these
programmers; their approach is to begin coding and

solve, with a profusion of code, all problems as they
appear. Pascal programmers are generally better, but
probably because the language makes program orga-
nization easier. Ada allows even more organization, at
the expense of a more complex, harder-to-learn
language that requires a more structured implementa-
tion approach.

For the amateur programmer, Pascal is probably the
limit of self-taught language. Ada is somewhat more
difficult to learn, so its impact on the amateur coder is
uncertain.

Related to this problem is the plethora of high school,
junior high, and even elementary students with access to
computers. Here again, the language is generally Basic.
They learn coding, but not software engineering of pro-
grams. Unless a precollege software engineering/com-
puter science curriculum is developed, colleges will soon
face the task of retraining students who possess bad
habits learned and practiced from childhood. The avail-
ability of computers in secondary schools might prove
less than beneficial if it results in undisciplined coders.

Ada will have surprising impact on systems for small
businesses. These systems are often developed by pro-
fessional programmers with a desire for independence
and are generally of professional caliber. Tools for
developing software on small systems are barely up to
the task, so remarkable skill and ingenuity have been
used to work around system-level shortcomings.

Advantages of Ada. Ada offers several advantages to
developers of small systems, particularly the ability to
easily enhance a system by adding a module with addi-
tional capabilities. Because of the package structure, a
software system can be designed through a common
database described in a single package that is accessible
to several service components. These components can
be assembled to suit the needs of the user, who pays
only for the software desired. As user needs grow, the
system can be enhanced by the addition of other service
modules.

Such modular growth is a familiar promise, but all
too often an empty one. With most current systems and
languages, additional software generally means a not-
so-minor revision of the existing system. Ada offers the
software engineer a legitimate tool with which to effect
an expandable software system.

Ada is a craftman’s toolbox, not a hacker’s sledge
and mallet. Well-engineered systems require discipline,
planning, a structured approach to systems develop-
ment,.and knowledge of the fundamental techniques of
software engineering: data abstraction, modularity, en-
capsulation, information hiding, etc. As the small-
systems market expands, the software designers who
prepare for the long term with a flexible, portable sytem
that is easily transferred from host to host will prosper.
As more people learn the techniques of software engi-
neering, Ada will become the most attractive language
for development of software for long-life-cycle systems
that are to be supported (maintained) for many years.

Highly cost-effective 16-bit microprocessors and
other hardware, the need for powerful small-system
development tools, and the expansion of application
areas from simple accounting systems into real-time (or

near real-time) business support and process control
systems will combine to make Ada the likely small-
system leader in the next decade. Surprisingly, the first
delivered Ada software was for an accounting and in-
ventory system that runs on a Motorola MC68000
system. About half of the Ada systems sold by TeleSoft
have been to suppliers of small business systems with no
DoD contracts.

Transition to Ada

Ada may create some of its own market, but most of
its use will be by programmers with experience in other
languages.

Transition to Ada requires two quite different, but
related transfers: that of programmer skills in other
languages and that of programs in other languages.
Neither is trivial. Programmer training is required
because of the new features and combinations of
features available in Ada and program conversion re-
quires more than mechanical translation. Both can be
cost effective in some situations.

Programmer conversion. Programmer conversion to
Ada is not as easy as handing the programmer a ref-
erence manual the day a project begins. Learning Ada in
this manner guarantees a budget overrun and a late pro-
ject that does not meet its specifications.

It has become an aphorism that bad programs can be
written in Ada, but a programmer trained in both
modern software engineering principles and ways to ap-
ply these rules to Ada will find it difficult to write really
horrible programs. Some software engineering princi-
ples are familiar to the experienced programmer, since
they are simply abstracted common sense. Because of
language limitations, others might be unfamiliar. For
example, the idea of data abstraction through user-
defined types might be unfamiliar to a Fortran pro-
grammer accustomed to using those few types prede-
fined in his language.

Neither is Pascal experience an entirely satisfactory
education for Ada. Though its algorithmic features
resemble those of Ada, Ada has additions that make
it subtly different and quite a bit more powerful. Ada’s
system programming features, for example, are un-
matched by Pascal.

Pascal programmers are deceived by the apparent
ease with which they produce working Ada programs.
On a small scale, this is no problem. On the large scale,
however, the Pascal mindset can seriously degrade the
performance of the system.

Ada must be learned and used as a distinct language
tool; it differs sufficiently from any other to warrant a
training program devoted to its proper use.

User implementation issues

From the user’s standpoint, Ada must satisfy certain
performance issues. Among them are fast task-switch
time; disabling of runtime checks; effective garbage col-
lection (to make recursion and access types thinkable

for real-time applications); and effective optimization
techniques for compiled code. Of course, users will be
affected by the implementation of Ada in other ways;
these are just a few of the obvious ones.

Overview: The papers in Part I

The first three papers in Part I, by Whitaker,
Carlson, and Fisher, present the ideas behind the
development of Ada and the early steps and plans for its
implementation. These authors, responsible for manag-
ing the development of Ada from its earliest days, were
DoD employees.

“The U.S. Department of Defense Common High
Order Language Effort’” by W. A. Whitaker, presents
much of the early background of the language. Its
development was motivated primarily by a desire to
avoid the costs of developing and maintaining software
in a variety of languages. The success of Cobol served as
an inspiration for the design of a language that would
meet the needs of most real-time applications. The goals
for the new language were to reduce the life-cycle cost of
software; ease transportability of software across pro-
jects and among computers; and assist maintenance,
reliability, and readability. It was to compare in effi-
ciency with the best possible machine-language coding.

“DoD’s Common Programming Language Effort’’
by David Fisher, details the evaluation of existing
languages against a set of requirements for a high-order
language that would satisfy a large number of applica-
tions. He also lists the steps in developing the re-
quirements for Ada. No existing language met all the re-
quirements, but Algol-68, Pascal, and PL/I could have
been modified to meet them. Instead, a design competi-
tion was established to produce a new language, which
was eventually named Ada. When Fisher and Whitaker
wrote their papers, the language had not yet been
named.

‘““Ada: A Promising Beginning’’ is by William
Carlson, who worked closely with the other two authors
at the Defense Advanced Research Projects Agency.
Carlson wrote it after the Ada design had been selected.
He lists Ada’s advanced features and some managerial
features of a common language. For example, he notes
that Ada will be taught to a large number of program-
mers and will be part of most modern software
engineering curricula. Carlson also lists the problems
that Ada was designed.to solve and the approach taken
to solving them. He argues for freezing the language
pending experience in its use and describes the use of a
validation test set to control the language.

‘“From Pascal to Pebbleman . .. and Beyond’’ by
Robert Glass, gives some history behind the name
““Ada’ and some background for the next stage in the
development of the Ada environment. He says that the
Ada environment will contain a standard set of software
tools: an editor, compiler, linker, debugger, and a con-
figuration manager, which will assist in the development
of Ada programs. He further notes that the Ada en-
vironment will be written in Ada and will be easily
transported to a variety of machine configurations. The
paper relates this national effort to similar European
and Japanese projects.

‘““What is Ada’’ by Ronald Brender and Isaac Nassi,
is a brief overview of the most important features of the
Ada programming language. Of particular importance
are the features supporting modularity and real-time
programming.

Ada packages are probably Ada’s main contribution
to programming language design. Brender and Nassi
believed that packages would aid in the grouping of
software subprograms into modules, which could be
reused in many projects without reprogramming.
Packages also support abstraction or information
hiding, which can help in program maintenance.
Another major contribution of Ada is the mechanism
for multiprocessing. Ada supports multiple tasks, pro-
tected communciation among tasks, priorities for tasks,
and scheduling of tasks and interrupts.

THE U.S. DEPARTMENT OF DEFENSE COMMON HIGH ORDER LANGUAGE EFFORT

William A. Whitaker, Lt.Col., USAF
Defense Advanced Research Projects Agency
1488 Wilson Blvd., Arlington, Va. 22283, USA

The United States Department of Defense (DoD) spends about three billion
dollars a year on computer software. This includes the design, development,
acquisition, management, and operational support and maintenance of such
sof tuare. Only a small fraction of this effort is involved with the
accounting, inventory, payrolling, ana financial management functions which are
defined by the Federal Government as Automatic Data Processing, those functions
that have their exact analogy in the commercial sector and share a common
technology, both harduare and software. A much larger fraction of the DoD’s
computer investment is in computer resources which are embedded in, and
procured as part of, major weapons systems, communications systems, command and
control systems, etc. In this environment the DoD finds itself spending an
even larger share of its systems resources on software. As a result, this area

is receiving increasing attention from the highest levels of management. A
number of technical and managerial initiatives have been called out to both
reduce the cost and improve the quality of Defense systems software. A

management plan has been formulated in this area and initial guidance is
provided by DoD Directive 5888.29, Management of Computer Resources in Major
Defense Systems.

In the area of software we may have, at the present time, more flexibility and
a greater influence on the technology than with harduware. Some years ago, the
DoD was a major innovator and consumer of the most sophisticated possible
computer harduare. It now represents only a small fraction of the total
commercial market. In softuware, that unique position still maintains. A
significant fraction of the total software industry is devoted to DoD related
programs and that is true in even larger proportion for the more advanced and
demanding systems. Thus, there is both an opportunity and a responsibility in
the software arena which is past for harduare.

One specific initiative which has been called out by DoD Directive 5608.29 is
the use of high order languages (HOL) in systems development. The advantages
are well knoun and in many communities, for instance, the COBOL financial
management community or the FORTRAN scientific computational community, these
advantages are so persuasive that there has been essentially no alternative to
the use of these common languages for more than a decade. The obvious
advantages include ease of wuriting of programs, self-documentation, ease of
maintenance, ease of modification, transportability of programs, simplification
of training, etc.

Reprinted from ACM Sigplan Notices, February 1978, pp. 19-29. Copyright
1978, Association for Computing Machinery, Inc. Reprinted by permission.

7

It is surprising that a general consensus has not mandated a common high order
language for embedded systems long since. There are, however, a number of
managerial technical constraints that have acted against this in the past. For
most Defense systems applications, very severe timing and memory considerations
have been prominent in the past, often governed by real time interaction with
the exterior environment. Because of these constraints, and restrictions in
developmental cost and time scale, many systems have opted for assembly
language programming. This decision is often substantially influenced by past
experience with poor quality compilers and the fact that the assembler comes
with the machine, while the compiler and its tools usually must be developed
after the project has begun. The advantages of high order languages, however,
are compelling and many more recent systems developments have turned to HOLs.
Because of limitations of available high order languages, the programs
generated most often include very large portions done in assembly code and
linked to an HOL structure, negating many of the expected advantages.

Further, many systems have found it convenient to produce their ouwn high order
language or some perhaps incompatible dialect of an existing one. Since there
is no general facility for control of existing languages, each systems office
has had to do the configuration control' on their language and compilers and
continue to maintain such on their particular dialect through the entire
maintenance phase of the system, which may be very long |ived. This has had
the effect of practically reducing the contractual flexibility of the
government and restricting competition in maintenance and further development.
This lack of commonality negates many advantages of high order |anguages
including transportability, sharing of tools, the development of very pouerful
tools of high efficiency and, in fact, not only raises the total cost of
existing tools, but in some cases essentially prices them out of the market.
Many development projects are very poorly supported and forced to live with a
technology which is far below the state-of-the-art.

By the early 1978’s each of the military departments had underway studies or
actual language designs which were expected to lead to common languages for
large portions of those departments, in January 1375 the Director of Defense
Research and Engineering set up a Defense-uide program with the goal of a
single common military computer programming language for embedded systems. The
intent was to have a real time language to supersede those numerous ones in
existence while maintaining the standards of FORTRAN and COBOL, the success of
Wwhich standards had provided impetus to this consolidation program. Fur ther,
to assure non-proliferation during the duration of this effort all other
implementations of new high order programming languages for R&D programs were
hal ted. A High Order Language Working Group (HOLWG) with representatives from
DoD and the Military Services was established as the agent for this effort.

Briefly, the logic of this initiative is as follous:

o The use of a high order language reduces programming costs, increases
the readability of programs, the ease of their modification,
facilitates maintenance, etc. and generally addresses many of the
problems of |'ife cycle program costs.

o

A modern powerful high order language performs these tasks better
and, in addition, may be designed to serve also in the specification
phase and provide facilities for automatic tests and program
verification. A modern language is required if real time, parallel
processing, and input/output portions of the program are to be
expressed in high order language rather than assembly l|anguage
inserts which destroy most of the readability and transportability
advantages of wusing an HOL. A modern language may also provide
better error checking, more reliable programs, and the capability for
more efficient compilers.

Many of the advantages of a high order language can only be realized
through computer tools. A total programming environment for the
language includes not just compilers and debugging aids but text
editors and interactive programming assistance, automatic testing
facilities and proofs of correctness, extensive module libraries, and
even semi-automatic programming from specifications. Universal use
of those tools which are available today would significantly reduce
the present cost of software. Development of more powerful tools
holds even greater promise. Unfortunately, the average programmer’s
tool box is rather bare. Because of the difficulty of preparing
these tools for each new language and machine and operating system,
and the time involved, only the very largest projects have been able
to assemble even a representative set. While in many cases
development of tools can be shoun to be desirable in the long run,
day to day pressures usually prevail. There is almost never time to
do it right. The use of a common high order language across many
projects, controlled at some central facility, would allow the
sharing of resources in order to make available the powerful tools
which no single project could generate. It would even make those
previously generated tools available at the beginning of a project,
reducing start up time.

Reducing the number of languages supported to a minimal number,
therefore, provides the greatest economic benefit. There are, of
course, costs associated with supporting any particular project and
general costs of supporting the language. For a sufficiently large
number of wusers, presumably the basic cost would be proportionally
less. Perhaps 288 active projects contributing to a single support
facility may not be proportionally much cheaper than two facilities
each supporting 188 projects, although the absolute saving would be
significant.

There are, however, unique advantages to having a single military
computer |language. With a single language, one could reasonably
expect new computers proposed for a project to be supplied by the
manufacturer with a compiler. This is, in fact, the experience of
the British with their common language effort. If there were five or
ten common languages, that is not a reasonable expectation. In fact,
if there were a single common 'language, its use in DoD and the
provision of tools by the DoD would make it a popular candidate for

