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Preface

Quantum theory is like the proverbial little girl with the curl.
When it is good, as in atomic theory, it is very, very good. When it
is bad, as in systems with an infinite number of degrees of freedom,
it is horrid. The central theme of this book is that the well-known
deficiencies of quantum field theory are generally due to inattention
to a basic characteristic of interacting quantum systems—the persist-
ence of self-interactions. The sources of this lapse are twofold. In the
strange world of microscopic physics, attempts to maintain continuity
of ideas lead to choices of interactions which are familiar and valid in
the macroscopic domain. Furthermore, a persistent self-interaction is
already nonlinear at the classical level and, consequently, encounters
profound difficulties in its analysis. However, in classical physics the
field equations and their boundary conditions constitute the total
theory, while in quantum theory the field equations are accompanied
by a separate superposition principle for probability amplitudes. This
principle is independent of the form (or existence!) of field equations.
This enables us to find amplitudes accounting for the persistent
interaction by a two-step process. Solution of the field equations for
the intrinsically nonlinear, nonperturbative field operators, followed
by construction of the amplitudes and superposition of the latter,
comprise this process. Successful completion of this construction
without the appearance of infinities then provides us with the freedom
to allow experiment to suggest more general interactions. The
result is quantum field theories with sensible interpretations free of
artificial constraints. As expected, physics questions, posed specifi-
cally, are answered in a broad context. The generality of the ideas
extends beyond the relativistic theories to applications in super-
conductivity, aperiodic systems such as liquids and others.

Any author quickly becomes aware of the confirmation of
friendship. In this intensely active field, ideas, freely exchanged,
have provided me with insights and understanding that I would not
have obtained alone. My thanks to these friends and colleagues is
but feebly expressed in this acknowledgement. Finally, the patience
and love of Harriet, Elizabeth, Konni, Sydney and Timothy have
made the burdens light and the way straight.

Philip B. Burt
Clemson, South Carolina



This work is dedicated to the memory of Louie Einsinger Burt, Sr.,
Louie Einsinger Burt, Jr. and Jesse Hoyle Clack . . . raphael

“ .. And (the Lord) brought them to Adam to see what he would
call them; and whatsoever Adam called every living creature, that
was the name thereof ... "’

Genesis 2:19

“. .. The new creature calls it Niagara Falls—why I am sure I do not
know—says it looks like Niagara Falls. That is not a reason, it is mere
waywardness and imbecility . .. ”

Adam’s Diary, Mark Twain



Notation

—
K= (ko ,k); this inverted caret is used for four-vectors throughout.

-
K2 =k3—k? = Kk = g, kik”

8y = diagonal (1,-1,-1,-1)

Yu» Dirac matrix (Bjorken 64); v, v, tv, vy = 2840
¢ = p““/p

summation convention; sum on repeated indicies
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CHAPTER ONE

A Perspective on Quantum Theory

“ ..how is that past increased, which is now no longer. . .”
Augustine: Confessions, XI

1. Origins: Quantum Mechanics As An Analogy to Classical
Mechanics

As the news of the revolution in physics based on quantum theory
spread throughout the world, a jargon of scientific sounds became
fashionable. One expression, ‘“‘quantum jump’’, is now almost univer-
sally recognized as a synonym for a qualitative improvement or an
abrupt, quantitative change. This pre-quantum mechanics notion—an
artifact of the Bohr theory—actually has a remarkable counterpart, in
a sense, in the original development of quantum mechanics. Although
etymology is not the subject of this monograph, the statement of
quantum mechanics, especially in the form presented by Schrodinger
(Schrodinger 1926), provides an excellent illustration of the appro-
priateness of the term. In this first section the development of quan-
tum mechanics in parallel to classical mechanics will be reviewed in
order to emphasize the discontinuity in the ideas of theoretical
physics leading to the former. A second purpose is to underline the
analogical structure of quantum mechanics in comparison with classi-
cal mechanics.

The beginning point of Schrodinger’s theory is the well known,
completely classical Hamilton-Jacobi equation (in time independent
form)

H(qi,05/0qi) - E=0, (1-1-1)
where q; are the coordinates of the system, E is the energy and S is

Hamilton’s characteristic function. Solution of this nonlinear partial
differential equation is equivalent to solutions of the equations of

1



2 A Perspective on Quantum Theory

motion of the system. After making the transformation of variable
S=KIn(y) (1-1-2)

where K is a constant with dimensions of action, one finds, for the
general mechanical system, that equation (1-1-1) has been replaced
by a statement that a quadratic form of y and dy/dq; is zero, i.e.,

H(q;,K(3¥/0q;)/¥) — E=0. (1-13)

This form is homogeneous in the dependent variable .

The departure from classical mechanics, hence the quantum jump,
consists of the assertion that the quadratic form is physically mean-
ingful for nonzero values. The quadratic form is then used as the
integrand of an integral such that, for arbitrary variations of ¢, the
condition that the integral have an extremum is the statement of the
new mechanics, namely, the (time independent) Schrodinger equation

Hy = Ey, (1-1-4)
where the familiar replacement
piv = (W)ay/dq; (1-1-5)

is made in the (now operator) Hamiltonian.

Nothing in classical physics supports the step in which the quadratic
form appearing in equation (1-1-3) is extrapolated to nonvanishing
values. In fact, Schrodinger quickly abandoned the details leading to
equations (1-1-4)-(1-1-5), calling them unintelligible, and pursued
the analogy between physical optics, its limit ray optics and the new
wave equation and the Hamilton-Jacobi equation (Schrédinger
1926a). Simultaneously, a search for the time dependent form of the
Schradinger equation was begun. Even if it were not already clear
that the above ‘‘derivation’ is an artifice, the fact that it does not
generalize to a development of the time dependent Schrodinger
equation would make it so. Nonetheless, the grand step had been
taken—a mechanical equation (for stationary states), from which the
energy spectrum of hydrogen could be derived with some physically
plausible assumptions, had been obtained. The equivalence of this
theory and Heisenberg’s matrix mechanics (Heisenberg 1925) was
quickly demonstrated (Schrédinger 1926Db).

The statement of quantum mechanics by Heisenberg and the sub-
sequent abstraction and synthesis of Heisenberg and Schrédinger
theory by Dirac (Dirac 1927, 1958) provide an especially clear illus-
tration of the analogical relation of canonical quantum mechanics
to canonical classical mechanics. The canonical classical system
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with n degrees of freedom is described by canonical coordinates
q;(t)(@=1,2...n) and their conjugate momenta p;(t), where t is time,
The Hamiltonian of the system is a function of p; and q; with the
property, for any function f(qj,p;;t),

of _df
3 + [f, h]pb T (1-1-6)
where the Poisson bracket of the two functions f and g is defined as
of 3g _ of g
fg], =z oide _of 3% 1-1-7
el = ¥ 3q,om ~ api 0 (1)

The fundamental Poisson brackets satisfy
(9,915 = [Pipjly, = 0, (1-1-8)
las.pjlp = 85(=1,i=;0, i#j) . (1-1-9)

Equation (1-1-6) expresses the fact that the Hamiltonian is the gen-
erator of time translations for the system. The canonical transfor-
mations of variables of the system—those transformations which leave
the fundamental Poisson bracket relations unchanged—also generate
the solutions of the equations of motion

d

[ai,Hl, = T (1-1-10)
dp

[Py, Hl = g - (1-1-11)

The state of the canonical classical system may be described by speci-
fying the solutions of equations (1-1-10)=(1-1-11) in terms of their
values at some time t,.

Using the definition of Poisson brackets, equation (1-1-7), the fol-
lowing results can be quickly established;

[f.elyp = = [8.f],, (1-1-12)
[f.aly, =0, (1-1-13)
[f+gh]y, = (L], + [g.hl . (1-1-14)
[fg.hly, = [fhl 8 + flghl, (1-1-15)
(f.[g.hl g5 + [ [0f] )5 + [hfig]lp), = 0, (1-1-16)

where f, g and h are arbitrary functions of p; and q; and a is an arbi-
trary constant. Equation (1-1-16) is the Jacobi identity. Through-
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out the entire discussion it has been assumed that all quantities are
real.

Canonical quantum mechanics can now be constructed by assuming
that Hermitian operators q; and p; exist which are analogous to the
classical canonical variables in the following sense. There exists a
bracket relation, the commutator, such that the fundamental
commutators of the operators p; and g; have the values

laiqi] = 9;95—q59; = O, (1-1-17)
[p;,p5]1 = pipj—pjp; = O, (1-1-18)
[9;,75) = qp—pjq; = By . (1-1-19)

More generally, commutators of operator functions of q; and D
have values obtained by the correspondence

[f.e] > (D)7 [f.g] (1-1-20)

where the arrow means; calculate the Poisson bracket of f and g and
replace the classical canonical variables in the result by the operators
g; and p; to obtain (ih)! times the commutator. These results can be
derived by assuming the existence and hermiticity of the commutator
and by using the results of equations (1-1-12)—(1-1-16), assumed to
be valid for the commutators (Dirac 1958). The only ambiguity en-
countered arises from ordering of products of p; and q;. This approach
to quantization is, of course, equivalent to, but more general than,
the Schrodinger theory. In this case, the “quantum jump” consists
of the assumption that the canonical system is described by non
commuting operators q; and p;.

The general statement of the canonical quantum mechanics of sys-
tems with a classical analogue is found in the fundamental com-
mutators, equations (1-1-17)-(1-1-19), together with the equation of
motion of the operators. The latter is found by using the corres-
pondence expressed in equation (1-1-20),

[LHIGH? = 5, (1-121)
dt

where f is an arbitrary function of q; and p; with no explicit time de-

pendence and H is the Hamiltonian of the system. The latter is ob-

tained from the classical form by replacing canonical variables by

their operator analogues. As usual, there may be an ambiguity in

ordering of terms.
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This describes the Heisenberg picture of quantum mechanics—
perhaps the closest analogy to canonical classical mechanics. How-
ever, it also provides us with a basis for generalization to new systems
possessing no classical analogues or systems for which no canonical
variables exist. The basis for generalization is found in the fundamen-
tal commutator relations, where we see that variables representing
independent degrees of freedom commute. This property is directly
related to the uncertainty principle. By analogy, in some new system,
a similar assumption can be taken to define the independent degrees
of freedom. A further generalization is obtained by replacing the
commutator by the anticommutator, for example. As is well known,
this generalization enables us to describe systems which satisfy
Fermi-Dirac statistics and the Pauli exclusion principle. Other general-
izations of the basic commutation relations have been discussed
which allow a description in terms of functions not expressible in a
power series in the p; and q; (Weyl; Aharanov).

With the equations of motion for the operators of the canonical
system in hand, the last step in the description of a system is the
specification of its state. In this respect quantum theory is again
qualitatively different from the classical description. The specifica-
tion is made by assuming that the system can be described by a set of
state vectors in an abstract vector space (Dirac 1958). These vectors
are eigenvectors of a complete set of commuting operators represent-
ing the observables of the system, i.e.,

$iaip) 165> = 75 15> (1-1-22)

where {zj}is a set of numbers. The most important property of these
state vectors is that they express the superposition principle of quan-
tum theory—a linear superposition principle. An arbitrary state of
the system, described by a state vector |X>, can be written

(X> = ay |§-1 >+ ay Ié‘g >+ .. (1-1-23)

where the a; are complex numbers related to the probability that the
system is found experimentally to be in one of the states ¢, >, 1, >...,
i.e., a measurement on the system produces the result ¢;, ¢,, ... a
fraction of the time determined from the coefficients a,, a,, etc. The
superposition principle, together with the uncertainty principle ex-
pressed by the noncommutativity of canonically conjugate variables,
defines the general theoretical structure which we refer to as
quantum theory.

In the Heisenberg picture discussed above the state vector is inde-
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pendent of time. Thus, all the dynamical evolution is found in the
operators. Unitary transformations, which leave the fundamental
commutators invariant, describe the time evolution of the system in
terms of operators specified at some instant. These are analogous to
the canonical transformations of classical mechanics.

2. The Analogy For Fields

The generalization of quantization to systems with an infinite
number of degrees of freedom was initiated by Heisenberg and Pauli
(Heisenberg 1929). The system is described classically by fields
gl/j(i’,t) and conjugate momentum fields m;(X,t), where j is a discrete
index. The position vector X replaces the ciiscrete index i for systems
of point particles. This correspondence is exhibited most clearly by
first dividing space into cells centered about a particular ¥ and then
passing to the limit in which the volume of the cell becomes infini-
tesimal (Goldstein; Wentzel). Rather than taking this approach we
will describe the fields in terms of Fourier components.

The decomposition into Fourier components is accomplished by
assuming that the system is periodic in a cell of volume V. Since the
fields are real, the Fourier series can be written in terms of sines and
cosines, where the wave vectors satisfy

Ky = 20VY3(n,8, + n8, + ny8,) = 20vV3% (1-2-1)
N denotes the triple of integers (n, ,n, ,nz), n; > 0. Each Fourier sine
or cosine mode, for each distinct wave vector, represents a distinct
degree of freedom for the system. Consequently, writing (for j=1)

V=3 ( Qugsin®y * X) + QNccos(?N-i’)) QT (12:2)
T = E (PNssin(l?N-)_()) + PNccos(fN-i))) (2/V);_ (1-2-3)

the canonical coordinates of the system can be chosen to be Qg and
Qn¢ while the canonical momenta are Py and Py . This treatment
was originally introduced to describe the electromagnetic field
(Heitler).

As in the case of discrete systems, the dynamics of the field can be
discussed in terms of Poisson brackets. The only change to be made
is to account for the two variables which occur for each n. The
Poisson bracket is redefined to be
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of 9 _of O
g -2 % ) (1:2:4)

fg] , = = =
[ g]pb N,r (aQNr aPNr 0Py, aQNr

where r ranges over s and c. The properties of the Poisson bracket
given in section 1-1 follow immediately. The fundamental Poisson
brackets are

[Qne:Quitlpp = PrmtsPrelpp = 0 (1-2-5)

[QNr’PMt]pb = MmOyt s (1-2-6)

while the time evolution of the system is still found from equation
(1-1-6) written in terms of the new Poisson bracket.

The transition to the quantum theory of fields is made as in the
mechanics of point particles. Assume that the canonical variables can
be replaced by noncommuting, Hermitian operators Py; and Qny
with fundamental commutators

[QNI’PMt = thdnmby (1-27)
[QNr’QMt] =0-= [PNr’PMtI . (1-2-8)

where, as before, the commutator of two operators a and b is defined
as

[a,b] = ab — ba (1-2-9)
The equation of motion for the operators describing the system is, in
the Heisenberg picture,

of
ot

+ [f,H] ) = j—f, (1-2-10)
where f is any function of Py, and Qp, and possibly t. The prescrip-
tion for calculating general commutators follows the directions given
in equation (1-1-20). The same ambiguities in order of factors arise.

Finally, to complete the quantum theory the state of the system is
described by vectors in an abstract vector space (Dirac 1958). Once
again, the basic assumption is that these vectors satisfy a linear super-
position principle. The coefficients appearing in a superposition of
vectors are related to the probability that a measurement on the sys-
tem gives the eigenvalues of the operators for which the particular
state vector is an eigenvector.

The end result of quantization of a field theory is that field
strengths are quantized. Canonically conjugate functions of these
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field strengths satisfy the uncertainty relations. The state of the sys-
tem is specified by giving the eigenvalues of some complete set of
operator functions of the canonical variables. However, as we shall
see in the next section, an important new property is present in the
quantum field theory—an intrinsic particle property.

3. Quanta Of Fields: The Particle Aspect Of A Quantized Field

Classical field theories were originally developed to describe continu-
ous systems, e.g., fluids, on the macroscopic level. No underlying par-
ticle structure of a fundamental nature was associated with the
systems. However, as the atomic hypothesis became more plausible
during the nineteenth century microscopic theories contemplating
matter as intrinsically particulate in nature gained acceptance. The
derivation of macroscopic continuum theories from particle theories
soon followed. Only the electromagnetic field seemed to occupy a
unique position among field theories. No medium such as the ether
could be associated with the field in a nontrivial way. The only par-
ticle structure within electromagnetism consisted of wave packets,
superpositions of waves of different frequencies and wave vectors,
These were known to disperse, so nothing fundamental could be
attributed to them. Thus, prior to the development of quantum
theory at least one field theory existed which seemed to have no
associated particle origins.

In the explanation of the photoelectric effect the idea of a photon
is a central hypothesis. In the initial discussion of the quantum
theory of radiation this idea, in its original form as the packet of
energy of an oscillator, was combined with electromagnetism (Dirac
1927). Subsequently, quanta were associated with other field theories.
These particles are qualitatively different from the classical concep-
tion of particles. They have momentum and energy, but localization
in space is only an approximate characteristic.

In order to show how the particle aspect of a quantized field arises
we will examine the spin zero field with the Klein Gordon equation
as field equation. This is a relativistically invariant theory. While
relativistic invariance is not essential, most of the applications in this
monograph will employ such theories.

The Klein Gordon equation is constructed by analogy with the
rules leading to the Schrodinger differential equation. With no inter-
action relativistic invariance is insured by assuming that the field ¢(x)
is a scalar with respect to Lorentz transformations and that the mass-



