- SANFORD WEISBERG

APPLIED LINEAR
REGRESSION

WILEY SERIES IN PROBABILITY
AND MATHEMATICAL STATISTICS



Regression

SANFORD WEISBERG

University of Minnesota
St. Paul, Minnesota

JOHN WILEY & SONS
New York - Chichester -

MK

»l

...............................................

Brisbane - Toronto




Copyright © 1980 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the
1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:
Weisberg, Sanford, 1947-

Applied linear regression.

(Wiley series in probability and mathematical
statistics)

Bibliography: p.

Includes index.

1. Regression analysis. I. Title.

QA278.2.W44 519.5'36 80-10378
ISBN 0-471-04419-9

Printed in the United States of America
10 9 8 7 6 5 4 3 21



APPLIED LINEAR REGRESSION



To my parents and to Carol



PREFACE

Linear regression analysis consists of a collection of techniques used to
explore relationships between variables. It is interesting both theoretically
because of the elegance of the underlying theory, and from an applied
point of view, because of the wide variety of uses of regression that have
appeared, and continue to appear every day. In this book, regression
methods, used to fit models for a dependent variable as a function of one
or more independent variables, are discussed for the reader who wants to
learn to apply them to data. The central themes are building models,
assessing fit and reliability, and drawing conclusions. If used as a textbook,
it is intended as a second or third course in statistics. The only definite
prerequisites are familiarity with the ideas of significance tests, p-values,
confidence intervals, random variables, estimation of parameters, and also
with the normal distribution, and distributions derived from it, such as
Student’s ¢, and the F, and x> Of course, additional knowledge of
statistical methods or linear algebra will be of value.

The book is divided into 11 chapters. Chapters 1 and 2 provide fairly
standard results for least squares estimation in simple and multiple regres-
sion, respectively. The third chapter is called “Drawing Conclusions” and
is about interpreting the results of the methods from the first two chapters.
Also, a discussion of the effects of independent variables that are imper-
fectly measured is given. Chapter 4 presents additional results on least
squares estimation. Chapters 5 and 6 cover methods for studying the lack
of fit of a model, checking for failures of assumptions, and assessing the
reliability of a fitted model. In Chapter 5, theoretical results for the
necessary statistics are given, since these will be unfamiliar to many
readers, while Chapter 6 covers graphical and other procedures based on
these statistics, as well as possible remedies for the problems they uncover.
In Chapter 7, the topics covered are relevant to problems of model
building, including dummy variables, polynomial regression, and principal
components. Then, Chapter 8 provides methods for selecting a model
based on a subset of variables. In Chapter 9, special considerations when
regression methods are to be used to make predictions are discussed. In
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each of these chapters, the methods discussed are illustrated by examples
using real data.

The last two chapters are shorter than the earlier ones. Chapter 10 gives
guidelines for analysis of partially observed or incomplete data. Finally, in
Chapter 11, alternatives to least squares estimates are discussed.

Several of the chaptqrs have assomated appendixes that have been
collected at the end “ef, % are Jnumbered to correspond to the
chapters. For example: Rﬁpﬁ’ 1A ,Js-!ﬁic second appendix for Chapter
1. The chapters are ordered for a semester or quarter course on linear
regression, and Chapters 1 to 8 make up a rigorous one-quarter course.

Homework problems are provided for each of the first nine chapters.
The theoretical problems are intended only for students with the necessary
statistical background. Problems that require analysis of data are intended
for everyone. Some of these have been left vague in their requirements, so
that they can be varied according to the interests of the students. Most of
the problems use real data and can be approached in many ways.

Computers. The growth of the use of regression methods can be traced
directly to wider availability of computers. While this book is not intended
as a manual for any specific computer program, it is oriented for the
reader who expects to use computers to apply the techniques learned. High
quality software for regression calculations is available, and references to
the necessary sources are in the text, in the homework problems, and in the
appendixes.

Acknowledgments. 1 am grateful to the many people who have com-
mented on early drafts of the book, supplied examples, or through discus-
sion have clarified my own thoughts on the topics covered. Included in this
group are Christopher Bingham, Morton Brown, Cathy Campbell, Dennis
Cook, Stephen Fienberg, James Frane, Seymour Geisser, John Hartigan,
David Hinkley, Alan Izenman, Soren Johansen, Kenneth Koehler, David
Lane, Kinley Larntz, John Rice, Donald Rubin, Wei-Chung Shih, G. W.
Stewart, Douglas Tiffany, Carol Weisberg, Howard Weisberg, and an
anonymous reader. Also, I wish to thank the production staff at the
University of Minnesota, Naomi Miner, Sue Hangge, Therese Therrien,
and especially Marianne O’Brien, whose expert assistance made completion
of this work a reality.

During the writing of this book, I have benefited from partial support
from a grant from the U.S. National Institute of General Medical Sciences.
Additional support for computations has been provided by the University
Computer Center, University of Minnesota.

SANFORD WEISBERG

St. Paul, Minnesota
February 1980
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SIMPLE LINEAR
REGRESSION

Regression is used to study relationships between measurable variables.
Linear regression is used for a special class of relationships, namely, those
that can be described by straight lines, or by generalizations of straight
lines to many dimensions. These techniques are applied in almost every
field of study, including social sciences, physical and biological sciences,
business and technology, and the humanities. As illustrated by the exam-
ples in this book, the reasons for fitting linear regression models are as
varied as are the applications, but the most common reasons are descrip-
tion of a relationship and prediction of future values.

Generally, regression analysis consists of many steps. To study a rela-
tionship between a number of variables, data are collected on each of a
number of units or cases on these variables. In the regression models
studied here, one variable takes on the special meaning of a response
variable, while all of the others are viewed as predictors of the response. It
is often convenient, and sometimes accurate, to view the predictor vari-
ables as having values set by the data collector, while the response is a
function of those variables. A hypothesized model specifies, except for a
number of unknown parameters, the behavior of the response for given
values of the predictors. The model generally will also specify some of the
characteristics of the failure to provide exact fit through hypothesized error
terms. Then, the data are used to obtain estimates of unknown parameters.
The method of estimation studied in this book is least squares, although
there are in fact many estimation procedures. The analysis to this point is
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2 Simple linear regression

called aggregate analysis, since the main purpose is to combine the data
into aggregates and summarize the fit of a model to the data. The next,
and equally important, phase of a regression analysis is called case analysis,
in which the data are used to examine the suitability and usefulness of the
fitted model for the relationship studied. The results of case analysis will
often lead to modification of the original prescription for a fitted model,
and cycling back to the aggregate analysis after modifying the data or
assumptions is often necessary.

The topic of this chapter is simple regression, in which there is a single
response and a single predictor. Of interest will be the specification of an
appropriate model, discussion of assumptions, the least squares estimates,
and testing and confidence interval procedures.

Example 1.1 Forbes’ data

In the 1840s and 1850s a Scottish physicist, James D. Forbes, wanted
to be able to estimate altitude above sea level from measurement of
the boiling point of water. He knew that altitude could be determined
from atmospheric pressure, measured with a barometer, with lower
pressures corresponding to higher altitudes. In the experiments de-
scribed, he studied the relationship between pressure and boiling
point. His interest in this problem was motivated by the difficulty in
transporting the fragile barometers of the 1840s. Measuring the
boiling point would give travelers a quick way of estimating altitudes.

Forbes collected data in the Alps and in Scotland. After choosing a
location, he assembled his apparatus, and measured pressure and
boiling point. Pressure measurements were recorded in inches of
mercury, adjusted for the difference between the ambient air temper-
ature when he took the measurements and a standard temperature.
Boiling point was measured in degrees Fahrenheit. The data for
n =17 locales are reproduced from an 1857 paper in Table 1.1
(Forbes, 1857).

On reviewing the data, there are several questions of potential inter-
est. How are pressure and boiling point related? Is the relationship
strong or weak? Can we predict pressure from temperature, and if so,
how well?

Forbes’ theory suggested that over the range of observed values the
graph of boiling point versus the logarithm of pressure yields a
straight line. Following Forbes, we take logs to the base 10, although
the base of the logarithms is irrelevant for the statistical analysis.
Since the logs of the pressures do not vary much, with the smallest
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Table 1.1 Forbes’ data, giving boiling point (°F) and barometric
pressure (inches of mercury) for 17 locations in the Alps
and in Scotland.

Case Boiling  Pressure
Number Point (°F) (in. Hg) Log(Pressure) 100 X Log(Pressure)
1 194.5 20.79 1.3179 131.79
2 194.3 20.79 1.3179 131.79
3 197.9 22.40 1.3502 135.02
4 198.4 22.67 1.3555 135.55
5 199.4 23.15 1.3646 136.46
6 199.9 23.35 1.3683 136.83
7 200.9 23.89 1.3782 137.82
8 201.1 23.99 1.3800 138.00
9 201.4 24.02 1.3806 138.06
10 201.3 24.01 1.3805 138.05
11 203.6 25.14 1.4004 140.04
12 204.6 26.57 1.4244 142.44
13 209.5 28.49 1.4547 145.47
14 208.6 27.76 1.4434 144.34
15 210.7 29.04 1.4630 146.30
16 211.9 29.88 1.4754 147.54
17 212.2 30.06 1.4780 147.80

being 1.318 and the largest being 1.478, we shall multiply all the
values of log(pressure) by 100, as given in column 5 of Table 1.1. This
will avoid studying very small numbers, without changing the major
features of the analysis.

A useful way to begin a regression analysis is by drawing a graph of
one variable versus the other. This graph, called a scatter plot, can
serve both to suggest a relationship, and to demonstrate possible
inadequacies of it. Scatter plots can be drawn on ordinary graph
paper. The x axis (or horizontal axis) is usually reserved for the
variable that is to be the predictor or describer, or independent
variable. In Forbes’ data this is the boiling point. The y axis or the
vertical axis is usually for the quantity to be modeled or predicted,
often called the response or the dependent variable. In the example,
the values for the y axis are 100 X log(pressure). For each of the n
pairs (x, y) of values in the data, a point is plotted on the graph.
Although easily produced with pencil and paper, most computer
programs for regression analysis will produce this plot.

The overall impression of the scatter plot for Forbes’ data (Figure
1.1) is that the points generally, but not exactly, fall on a straight line



4 Simple linear regression

(the line drawn in Figure 1.1 will be discussed later). This suggests
that the relationship between the two variables may be described (at
least as a first approximation) by specifying an equation for a straight
line.
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Figure 1.1 Scatter plot for Forbes’ data.

As we progress through this chapter, the methods studied will be
applied to these data.

1.1 Building a simple regression model

In simple regression, the relationship between two quantities, say X and Y,
is studied. First, we hope that the relationship can be described by a
straight line. For this to be reasonable, we may need to transform the
scales of the quantities X and/or Y, as was done in Forbes’ data, where
pressure was transformed to log(pressure). In this chapter, observed values
of the quantities X and Y are denoted by subscripted lower case letters:
(x;, ;) are the observations on X and Y for the ith case in the study. The
major features of the simple regression model are given here. A more
formal approach is given in Appendix 1A.1.



1.1 Building a simple regression model 5

Equation of a straight line. A straight line relating two quantities ¥ and
X can be described by the equation

Y = B+ B X (1.1)

where S, is called the intercept, and corresponds to the value of Y when
X =0 (and is therefore the point where the line intercepts the y axis), and
B, is called the slope, giving the change in Y per unit change in X (see
Figure 1.2). The numbers B, and B, are called parameters, and, as they
range over all possible values, they give all possible straight lines. In
statistical applications of straight line modeling, these parameters are
generally unknown, and must be estimated using the data. The difference
between estimates of parameters computed from data and the actual,
though unknown, values of the parameters is very important, since the
data provide information about the parameters, not their actual values.

-

Bo = intercept

[ | o .
1 2 3
X

Figure 1.2 A straight line.

Errors. Real data will almost never fall exactly on a straight line. The
differences between the values of the response obtained and the values
given by the model (e.g., for simple regression, the observed values of Y
minus (S, + ;X)) are called statistical errors. This term should not be
confused with its synonym in common usage, “mistake.” Statistical errors
are devices that account for the failure of a model to provide exact fit.
They can have both fixed and random gomponents. A fixed component of
a statistical error will arise if the proposed model, here a straight line, is
not exactly correct. For example, suppose the true relationship between Y
and X is given by the solid curve in Figure 1.3, and suppose that we
incorrectly propose a straight line, shown as a dashed line, for this
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relationship. By modeling the relationship with a straight line rather than
the appropriate curve, a fixed error, sometimes called the lack of fit error,
is the vertical distance between the straight line and the correct curve. For
the standard linear regression theory of this chapter, we assume that the
lack of fit components to the errors are negligible.

Fixed lack of fit error

N

X

Figure 1.3 Approximating a curve by a straight line.

For the purposes of this chapter, the random component to the errors is
more important. The random component can have several sources. Mea-
surement errors (for now, consider only errors in Y, not X ) are almost
always present, since few quantitative variables can be measured with
perfect accuracy. The effects of variables not explicitly included in the
model can contribute to the errors. For example, in Forbes’ experiments
wind speed may have small effects on the atmospheric pressure, contribut-
ing to the variability in the observed values. Also, random errors due to
natural variability occur.

Let ¢; be the value of the statistical error for the ith case,i=1,2,...,n.
Assuming that the fixed component of the errors is negligible, the ¢, have
zero mean, E(e)=0,i=1,2,..., n. (See Appendix 1A.2 if the symbols
E( ), var( ), and corr( , ) are unfamiliar.) An additional convenient as-
sumption is that the errors are mutually uncorrelated (written in terms of
the covariance operator, as cov(e;, €) =0, for all i # j), and have common,
though generally unknown, variance var(e) = o0% i=1,2,..., n Heuristi-
cally, uncorrelated means that the value of one of the errors does not
depend on or help determine the value of any other error. Little generality
is lost if the word independent is substituted for uncorrelated. An even



