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SERIES EDITOR’S FOREWORD

This Benchmark Series in Electrical Engineering and Computer Science
is aimed at sifting, organizing, and making readily accessible to the reader
the vast literature that has accumulated. Although the series is not intended
as a complete substitute for a study of this literature, it will serve at least
three major critical purposes. In the first place, it provides a practical point
of entry into a given area of research. Each volume offers an expert's
selection of the critical papers on a given topic as well as his views on its
structure, development, and present status. In the second place, the series
provides a convenient and time-saving means for study in areas related to
but not contiguous with one’s principal interests. Last, but by no means
least, the series allows the collection, in a particularly compact and convenient
form, of the major works on which present research activities and interests
are based. ) .

tach volume in the series has been collected, organized, and edited by
an authority in the area to which it pertains. In order to present a unified
view of the area, the volume editor has prepared an introduction to the
subject, has included his comments on each article, and has provided a
subject index to facilitate access to the papers.

We believe that this series will provide a manageable working library of
the most important technical articles in electrical engineering and computer
science. We hope that it will be equally valuable to students, teachers,
and researchers.

This volume, Distributed Parameter Systems Theory, Part |1: Estimation,
is the second of a two-volume set edited by Peter Stavroulakis. It contains
thirty papers on the estimation aspects of distributed parameter systems.
All of the papers reproduced here have been published in the past decade,
and, in fact, most of them date from 1975 or later. Although workers in
this area should find both volumes of interest, they can be profitably
read independently. -

JOHN B: THOMAS



FOREWORD

It is my pleasure to write the prologue of this two-volume reprinted
paper book on Distributed Parameter Systems Theory, edited by P. Stavroulakis.

Distributed parameter systems theory encompasses a variety of scientific
and engineering fields. In countless physical situations one encounters systems
involving pararheters that are time varying and/or distributed over certain
spatial domains. The dynamic behavior of these systems is governed by partial
différential equations, integral, or integrodifferential equations, and some-
times by more general functional equations. Due to the fundamental nature
of these problems and the importance of application areas, the study of dis-
tributed parameter systems has attracted the attention of great mathematicians
and control theorists over the years. As an.example, the pioneering work
Methods of Mathematical Physics of Courant and Hilbert [1] is mentioned,
which contains basic results in the study of partial differential equations.

From the applied engineering points of view, these types of systems have
become the subject of serious study, since 1960, starting with the papers of
Butkovsky, Wang, Lions, and nthers. The most important results that laid the
foundations for the study of dstributed parameter systems problems seem to
be the Distributed Parameter Maximum Principle in optimal control, the Dis-
tributed Parameter Separation Principle in estimation and stochastic control,
and the results related to the optimal location of pointwise control actuators
and sensors. N ' ‘

The two decades (1960-1980) witnessed an unprecedented development
of this field with applications to a wide range of scientific disciplines, such
that the collection of basic results on distributed parameter systems theory has
become long overdue. It is evident that new students and researchers in this
field will find such a set of original results absotutely necessary for their work.

. The Benchmark Books Series has been serving such a purposk in many
scientific fields for a long time. In the present two volumes on distributed
parameter systems, the reader will find many important results on control,
estimation, and related topics, which are believed to make the searching
process for more new results in'this field mych easier.

SPYROS G. TZAFESTAS
REFERENCE

1. R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 1,
Interscience Publishers, inc., New York, 1953, 561p.
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PREFACE

In physical situations, one often encounters systems the parameters of
which are distributed in both space and time. The dynamic behavior of these
systems is governed by partial differential equations, integral equations,
integrodifferential equations, and.sometimes, more general functional equa-
tions. Optimal control problems for systems with distributed parameters
frequently arise in mechanics, mathematical physics, and engineering.
Sometimes situations exist in which systems that are described by high order
ordinary differential equations can be considerably simplified, under certain
assumptions, if we express them by partial differential equations. The
fundamental equations of electromagnetism, fluid mechanics, thermo-
dynamics, chemistry;: angd relativistic kinematics may be written dnrectly
as systems of'partial differential equations.

This reprint book collects the major theoretical results that have been
published in the general area of estimation of distributed parameter systems
(DPS) in the last ten ygars in a cohesive volume. This book also covers “the
major developments on computational techniques that have been derived
as well as the areas of the applications of the theoretical results. Important
papers that have been published before 1970, even though they are excluded
as reprint papers, are included as references in the discussion that precedes
each group of papers. This book is divided into six sections: Observability,
Filtering, Smoothing, and Prediction, ldentification, Computational
Methods, Sensitivity, Applications. Each section begins with editorial
comments that are then followed, in the opinion of the editor, by original
important publicatiens that have appeared in the last ten years and that
cover the subject of each section most adequately. A constraint that had to
be met in selecting these papers among an impressively large set of papers
was, besides the quality of each paper, the fact that the book should be kept
at a manageable size of around 300 pages. We hope that this constraint did

“not affect our original goal to present in a balanced manner the general
estimation area of distributed parameter systems to be useful to both
students and researchers.

PETER STAVROULAKIS
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INTRODUCTION

Distributed parameter systems (DPS) theory has attainad consid-
erable maturity and sophistication in the last twenty years. The origin
of this field of study usually is dated {from the first papers of the
Russian scientists Butkovsky and Lerner in 1960 [1]. Some work had
appeared much earlier on the calculus of variations far systems
described by partial differential equations :n 1953 in the book Meth-
. ods of Mathematical Physics by Courant and Hilbert [2]. This earlier
book was, however, somewhat different in intent because it was
purely theoretical.

The results of the theory of DPS recently have been applied to a
large number of engineering fields. The key areas of the theory that
have found an impressive number of applications are stability, control
estimation, identification, and optimal design. Appllcatlon areas in
the last ten years include chemical engineering, petroleum and
metallurgical industries, nuclear reactor control, plasma control,
mechanical structure design problems (bridges, platforms), resource
recovery (oil, water, coal) environmental problems (environmental
quality modeling, control, water quality management, physiological
systems (distribution and effect of drugs, for example), and sociologi-
cal systems (dynamic modeling and control of behavior of groups of
people), to name a few.

The fundamental aspects of observability as it relates to the
ability to recover completely some prior state of a dynamic system
based on partial observations of the state over some period of time for
various models are covered in the first section. The question of
observability is examined in conjunction with filter convergence of
stochastic DPS.

- The filtering technigue as an estimation process is studied in the
second section. Several statistical information-processing approaches
are utilized. Among these stand out the Wiener-Hopf equation,
orthogonal projection, maximum likelihood Bayesian approach, Fokker-
Planck equations, adaptive estimation method via the partitioning
estimates algorithm, and the Monte Carlo approach.




Introduction

In the third section, fundamental aspects of identification as an
estimation process are covered. The problems presented include
parameter, initial state, and input identification.

The fourth section covers several aspects of computational
methods in DPS estimation. Emphasis is placed on filter convergence
by the appropriate choice of measurements and sensor location so
that observability of the system is preserved.

System sensitivity to the measurement conditions is studied in
the fifth section. ‘

Finally, the last section presents a comprehensive survey of
recent applications of DPS theory as it relates to a wide variety of
éstimation problems. ' -

REFERENCES

1. A.G. Butkovsky and A. Y. Lerner, The Optimal Control of Systems with
Distributed Parameters, Autom. Remote Control 21:472-477 (1960).

2. R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 1,
Interscience Publishers, Inc., New York, 1953, 561p.
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.7 " Editor's Comments
on Papers 1 Through 4

1 GOODSON and KLEIN
A Definition and Some Results for Distributed System
Observability

2 YU and SEINFELD ; |
Observability of a Class of Hyperbolic Distributed Parameter
Systems

3 YU and SEINFELD
Observability and Optimal Measurement Location in Linear
Distributed Parameter Systems

4 KOBAYASHI :
Discrete-time Observability for Distributed Parameter Systems

Observability refers to the ability to recover completely some
prior state of a dynamic system based on partial observations of the
state over some period of time. Observability is also a fundamental
property in state estimation. It is true that estimates of the states
converge to the best possible estimates when the measurements are
taken so that the system is observable. Observability for DPS has been
defined by Wang [1]. Sakawa [2] studies the determination of initial
conditions of DPS on the basis of observed measurement as an
observability problem. In Paper 1, Goodson and Klein define observability
as the ability to establish the uniqueness of a solution of the system
under study. Necessary and sufficient conditions for observability of a

“class of hyperbolic systems are derived by Yu and Seinfeld in Paper 2.
In Paper 3, Yu and Seinfeld study the concepts of observability in
conjunction with filter convergence of a class of stochastic DPS. The
questions they examine are the effect of measurement locations on
observability and the optimal location of measurement for state
estimation. It is shown that for systems whose solutions can be
expressed as eigenfunction expansions, only a few measurements
need suffice for observability. Finally, in Paper 4, Kobayashi examines
observability on the basis of the observed measurement data from a
finite number of sensors over a finite period of time. It is shown that



Editor’s Comments on Papers 1 Through 4

for finite sensor locations, a general class of DPS cannot be observ-
able by utilizing finite step observations (finite time). Certain cases
for which this is true are also investigated.

REFERENCES

1. P. K. C. Wang, Control of Distributed Parameter Systams, Advances in
Control Systems, vol. 1, Academic Press, New York, pp. 75-172 (1964).

2. Y. Sakawa, Observability and Related Problems for Partial Differential
Equations of Parabolic Type, SIAM J. Control 13:14-27 (1975). -
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A efinition and Some Results for Distributed
- System Observability

RAYMOND E. GOODSON, MEMBER, 1EEE, AND RICHARD E. KLEIN, MEMBER, IEEE

. INTRODUCTION

FUNDAMENTAL problem in distributed system

control is measurement. The spatial location of meas-
urement transducers and the information content of the
resulting signals with respect to the distributed state and
partial differential equation model are the primary ques-
tions. The location of sensors is not necessarily dictated
by physical consideration ard should be included as one
question in the optimal control formulation. The informa-
tion content of the measurement sighals relative to the
model is an indication of the capability of a feedback
system to accurately control a process.

Both of these problems concerning distributed control
measurement may be posed as observability questions.
The observability of systems with ordinary differential
equation models is concerned primarily with the informa-
tion content of the measurement signals. For distributed
systems, sensor location is equally important. Recognizing
the measurement problems in feedback control of distrib-
uted systems, a new definition of abservability is intro-
duced. The definition states observability as a uniqueness
question and does not consider the subsequent estimation
problem. However, the definition is independent of & par-
ticular analytical solution form as is the presént theory
for ordinary differential equations. Therefore, the full
range of classical and modern mathematical techniques
may be employed to answer cbservability questions.

For systems with modal solutions, a weakened defini-
tion of observability is offered. The application of this
definition to several examples provides considerable in-
sight into the sensor location problem. While a complete
theory for distributed system theory is not developed, the
defipition and results should provide an impetus to futther
research.

An observability theory for dlstnbuted systems should
consider the following questions.

-
s

Manuseript received November 21, 1968; revised June 9, 1969.

R. E. Goodson is with the School of Mechnical Engmeenng,
Purdue University, Lafayette, Ind. 47907,

R. E. Klein is with the Depnrtment of Mechanical Engineering,
University of Illinois, Urbana, Ill. 61801.

1) Where should the measurement transducers be lo-
cated in order to provide feedback information with re-
spect to a specified control domain?

2) Does the output measurement contain sufficient in-
formation to uniquely prescribe a solution with respect
to the dynamical model and the control domain?

3) Can a stable estimator be built which operates in
the presence of noise?

4) Given an estimator, can something be said about
the accuracy of the estimates in the presence of noise?

For finite-state, linear ordinary differential equations,
all of the applicable questions have been considered and
answered for the case éf {Gaussian noise [1]-[3]. For
nonlinear ordinary differbhtial equation systems, estimator
equations havé been developed for cerfain cases even
though questions 2) and 4) have remained unanswered
[4], [5]. In addition, for certain partial differential equa-
tions [6] and ordinary differential equations with pure
time delays [7], estimator equations have been derived
with particular answers to questions 2) and 4). For non-
linear systems, the sparsity of results related to observ-
ability and estimation theory is partially attributed to the
absence of a general theory for nonlinear differential
equations. In contrast, for certain classes of partial differ-
ential equations, theory is available which provides a
basis for investigating observability.

Previously, the ordinary differential equation observ-
ability results of Kalman [2] and also of Gilbert [1] have
required, in total, four basic system properties, which are:

1) linearity of the differential operator,
~ 2) group property [ﬂ with respect to time of the sys-
: tem’s transition operator,
© 3) that the class of differential operators be with re-
* spect to one independent variable only, and
4) structural decomposition properties (in the sense
employed by Gilbert). } i

For distributed parameter systems, Wang [9] has &'w
cussed certain aspects of observability and has glvenvs,
definition with respect to initial state recovery of systems
expressible in state function space notation. The recovery
of initial state is a useful notion in ordinary differential

-
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equations; however, it is of limited utility in partial differ- .

ential equations and, hence, the definition by Wang [9]
will not be adhered to.

When the observability of distributed systems is con-
sidered, the differential operator is defined with respect to
two or more independent variables since the solution is
defined over a continuum in space. In addition, only semi-
group properties hold for certain partial differential oper-
ators of importance. Consequently, the definition for ob-
servability of distributed systems must, therefore, allow
for both measurement data and solutions defined over a
continuum. Further, backward time extrapolation of meas-
urement data is extraneous to cbservability and must not
be required by the definition.

This paper considers questions 1) and 2); specifically,
where should measurement transducers be located and
when does noise-free measurement data provide sufficient
information to guarantee a unique solution to a partial
differential equation in the absence of initial conditions
and possibly boundary conditions?

THE PARTIAL DIFFERENTIAL EQUATION MobEL

The general form for the partial differenitial equations
considered in the definition and- rwult.s is ngen by b

L~

m“»“+z8wm e Ewey O
where e

u is an n-column vector representing the
dependent variables,

k is the dimensionality of the spatial do-
main,

x ) is a k vector of spatial coordinates
defined over a simply connected domain
2(1),

¢ is time,

B;i =0,---k is an n X n matrix with elements of
class C1,

E is an n-column vector with elements of
class CL.

The boundary conditicns are assumed to satisfy
fUXL) lxmin = 0, £20 @)

where 80 (2) denotes the boundary of the spatial domain
Q(6). The elements of the column’ vector f are assumed to
be piecewise continuous. The unknown initial condition
u(x,0) is assumed to belong to some class of functions
to be preseribed. )

The form of (1) and (2) includes most equations from
mathematical physics where the continuum hypothesis
[10] bas been invoked to define point functions. No
general solutions to (1) and (2) are available. In fact,
the existence and uniqueness of solutions to these equa-
tions is an open question. However, a canonical form is
useful and that of (1) and (2) is appealing both from a
physics and a mathematical viewpoint since most equa-
tions of interest can be expressed by it.

-

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, APRIL 1970

DEFINITION OF OBSERVABILITY WITH REFERENCE
TO THE UNIQUENESs QUESTION

Definition 1: The measurement veetor y (¢) is defined by

v = [ aCud, 0Su<tLnn>n ()
D (8
where C(x,t) isanr X n matrix, and ﬂ.(t), where Q. () C
,e$(t), is the measurement domain,

Definition 2: Let Q.(t), where Q.(t) C Q(t), be that
spatiai dommn (or space-time domain R.(2,t) if = assumes
preseribed values over some time mtervsl) vnth respect
to which the observability question is posed.

Definition 3—Definition of Observability: Given the par--

tial differential equation model in (1), the gystem is said
to be observable in the domain 0.,(:) [or @, (x t)] if and
only if a unique solution u(x;t) in 9.(¢) [or Q.(xt)] is
established by the boundary conditions in (2) and the
measurements y ().

Remark 1: The introduction of an O, domain is a
major departure from linear oxﬂina.ry d'lﬂ'eréntml equation
observability ' theory. The’ ‘need for this is putwularly

“evident for partial differential ‘equatiohs of *byperbohc'

type with charabteristic’ linos. n fa»ct, “hg domain ovVer
which the solution"is’ observable is an important conse-
quence of the ohsetvabllity inyestigation,

Remark 2: The solution Vector u{x,f) within Q. is not
the system state in the sense that u(x,r) is required to
generate the solution for ¢ > r. Furthermore, the class of
admissible solutions must be prescribed for each particular
case under study and this often may be accomplished by
prescribing the class of initial functions.

Remark 3: Although the boundary conditions must
be in the form of (2), they may be partially or entirely
unknown; i.e., observability may be estiblished by the
measurements y(¢) alone.

Remark 4: A partial differential equatlon may be
observable in only one or several of the elements of the
veetor u. Thus, a distributed system might be decomposed
into observable and nonobservable solution parts.

Remark 5: The spatial location of the measurement
transducers is determined by the matrix C(x,). The
measurement domain @.(¢) is usually specified. The
weighting C (x,t) is part of the control design problem.

Remark 6: In the case of point measutements, C (x,!)
would have Dirac delta functidns as elements providing
the appropriate measurements.

Remark 7: For certain linear partial differential equa-
tions, particularly those governed by the Sturm-Liouville
theory [11], [12], solutions may be expressed as infinite
summations of the weighted modes or eigenfunctions. For
such systems, a particular definition related to the eigen-
functions is useful.

ith stationary boundaries and linear boundary condi-
tions. For all admissible solutions which satisfy

\Deﬁnition 4—N-Mode Observability: Let (1) be linear

u#ﬂ=%%%%%%%i=bwn(0




”
GOODBON AND KLEIN: DISTRIBUTED SYSTEM OBSERVABILITY

where ga(f) and é.°(x,t) are known, then the system is
N-mode observable in Q if and only if the uniqueness of
the coefficients a.’, for m < N, is established by y(¢) for
each 1.

Results

In brder to establish observability with respect to the

precéding definitions, uniqueness theories for partial differ-

ential equations are required. There are three main tech-

niques used in this paper to establish uniqueness. They
are analytie continuation [13], charagteristic theory [14],
[15], and eigenfunction expansions [117], [12], all of
which are classical. The formal application of these tech-
niques to relevant problems in the form of (1)-(3) is the

" subject of the remainder of this paper. The problems con-
sidercd are of sufficient variety to encourage the applica-
tion of the definition to other problems of interest.

The type of theory to employ in the investigation of
observability for classical and nonclassical boundary value
problems depends strongly on the class of partial differ-
ential equations. Since the physical phenomena actually

" occurring in the process and the class of the appropriate

" partial differential equation describing the process are
strongly linked, a proper technique can often be deter-

" 'mined from the physics. For specific information on clas-
sification, see Courant and Hilbert [15] and Petrovsky
[16]. '

Result 1—First-Order Quasilinear Equation: In (1), let
B; and E be scalars with By = 1. Also, assume that the
class of unknown initial functions u(x,0) satisfies a
Lipschitz condition. This form is of importance im fluid
mechanics, reactors, heat exchangers, and distillation col-
umns, fer example.

Characteristic lines in the x,t space exist for this scalar
equation, which represents the simplest example of hyper-
bolic-like beha.vnor Define the domains

) = (x]0<m<a; =1k (5)

for 0 <t < T, T > 0. The Cauchy initial value theory
is directly appllcable to this problem [15]. Equation (1)
for B,, i = 0,---,k, reduces to the ordinary differential
equation set

du/dt = E 6)

dz;/dt = B;, 1=12,---k. )

Equation (7) defines the characteristic directions n %,
along whidhy the rate of change of the solutlon is defmed
by (6). .
For B, not™functions of u(x t), the characteristic direc-
" tions are known in advance and the observability require-
ments may be determined by a construction procedure as
follows. For a given domain of interest Q. (x,¢) C 2(¢) X ¢,
‘construct, by integrating (7), the family of characfer-
istic manifolds passing through Q.(x,t) and contained in
Q(2) X t. A necessary and sufficient condition for unique-
ness of the solution u(x,t) in Q.(x,¢) is that the solution
value u be given over a measurement manifold Q.(f)

which intersects once the entire family of characteristic
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Fig. 1. Ercvelope of characteristic manifold and
suitable measurement domain.

manifolds determined by Q. (x,t) and (7). This const.ruc-
tion procedure is indieated in Fig. 1, for k = 2.

Remark 1a): An immediate conclusion from this re-
sult is that for more than one space dimension (k& > 1)
no finite set of point transducers recording data contin-
uously in time is sufficient to observe the solution over
any domain 8.(x,!) except: for certain characteristic sub-
sets of @ X ¢ (which have zero measure).

Remark 1b) : The general quasilinear problem occurs
when the B; coefficients are also functions of the dependent
variable 4. Two modifications to the discussion become
necessary. First, the characteristic directions given by (7)
become functions of u; thus, the space-time locations of
Q. (t) for observability in ©.(x,f) may vary. Second, the
solution » may be extended only locally, in general, since
the nonlinear Cauchy theory is valid only in the small.
However, for particular nonlinear problems, solutions in
the large may be obtained using the characteristic theory.

Remark 1c) : Results similar to those of Remarks 1a)
and 1b) hold for the vector case of (1) when the equations
are hyperbolic.

Result 2—Linear One-Dimensional Parabolic Equation:
Let (1) take the form

10 01 o o] -
. *loo 1 0% o -1

whe;'e Q= {£]0 <7< 1} and | wm(2,0)] < U, where
U is a.prescribed bound. Also, let

o(x; — %) 0
C(zyt) = (9)
0 oz — %)

where
Gu(t) = (|02 < 1}

for 0 < & <t < b, t, >t and where 3(z) is the Dirac
delta function. Hence, z* corresponds to the point of meas-
urement. Now, for f; at @, = 0'and z; = 1 analytic in ¢
forl _>__ 0, the solution u is observable over the domain

Qxt) = {(z) [0S < 1, ¢ 2 b




