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Preface

In recent years there is a growing interest in generalized convex func-
tions and generalized monotone mappings among the researchers of ap-
plied mathematics and other sciences. This is due to the fact that
mathematical models with these functions are more suitable to describe
problems of the real world than models using conventional convex and
monotone functions. Generalized convexity and monotonicity are now
considered as an independent branch of applied mathematics with a wide
range of applications in mechanics, economics, engineering, finance and
many others.

The present volume contains 20 full length papers which reflect cur-
rent theoretical studies of generalized convexity and monotonicity, and
numerous applications in optimization, variational inequalities, equilib-
rium problems etc. All these papers were refereed and carefully selected
from invited talks and contributed talks that were presented at the 7th
International Symposium on Generalized Convexity/Monotonicity held
in Hanoi, Vietnam, August 27-31, 2002. This series of Symposia is orga-
nized by the Working Group on Generalized Convexity (WGGC) every
3 years and aims to promote and disseminate research on the field. The
WGGC (http://www.genconv.org) consists of more than 300 researchers
coming from 36 countries.

Taking this opportunity, we want to thank all speakers whose contri-
butions make up this volume, all referees whose cooperation helped in en-
suring the scientific quality of the papers, and all people from the Hanoi
Institute of Mathematics whose assistance was indispensable in running
the symposium. Our special thanks go to the Vietnam Academy of
Sciences and Technology, the Vietnam National Basic Research Project
"Selected problems of optimization and scientific computing” and the
Abdus Salam International Center for Theoretical Physics at Trieste,
Italy, for their generous support which made the meeting possible. Fi-
nally, we express our appreciation to Kluwer Academic Publishers for
including this volume into their series. We hope that the volume will
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be useful for students, researchers and those who are interested in this
emerging field of applied mathematics.

ANDREW EBERHARD
NICOLAS HADJISAVVAS

DINH THE Luc
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Chapter 1

ALGEBRAIC DYNAMICS OF
CERTAIN GAMMA FUNCTION VALUES

J.M. Borwein*

Research Chair, Computer Science Faculty,
Dalhousie University, Canada

K. Karamanos
Centre for Nonlinear Phenomena and Complex Systems,
Université Libre de Bruzelles, Belgium

Abstract We present significant numerical evidence, based on the entropy analy-
sis by lumping of the binary expansion of certain values of the Gamma
function, that some of these values correspond to incompressible al-
gorithmic information. In particular, the value I'(1/5) corresponds to
a peak of non-compressibility as anticipated on a priori grounds from
number-theoretic considerations. Other fundamental constants are sim-
ilarly considered.

This work may be viewed as an invitation for other researchers to
apply information theoretic and decision theory techniques in number
theory and analysis.

Keywords: Algebraic dynamics, symbolic dynamics.

MSC2000: 94A15, 94A17, 37Bxx, 11Yxx, 11Kxx

1. Introduction

Nature provides us with a wide variety of symbolic strings ranging
from the sequences generated by the symbolic dynamics of nonlinear
systems to RNA and DNA sequences or DLA patterns (diffusion limited

*email:jborwein@cs.dal.ca
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aggregation patterns are a classical subject in Nonlinear Chemistry); see
Hao (1994); Nicolis et al (1994); Schréder (1991).

Entropy-like quantities are a very useful tool for the analysis of such
sequences. Of special interest are the block entropies, extending Shan-
non’s classical definition of the entropy of a single state to the entropy
of a succession of states (Nicolis et al (1994)). In particular, it has been
shown in the literature that scaling the block entropies by length some-
times yields interesting information on the structure of the sequence
(Ebeling et al (1991); Ebeling et al (1992)).

In particular, one of the present authors has derived an entropy cri-
terion for the specialized, yet important algorithmic property of auto-
maticity of a sequence. We recall that, a sequence is called automatic if
it is generated by a finite automaton (the lowest level Turing machine).
For more details about automatic sequences the reader is referred to
Cobham (1972), and for their role in Physics to Allouche (2000).

This criterion is based on entropy analysis by lumping. Lumping is
the reading of the symbolic sequence by ‘taking portions’ (see expression
(1)), as opposed to gliding where one has essentially a ‘moving frame’.
Notice that gliding is the standard approach in the literature. Reading
a symbolic sequence in a specific way is also called decimation of the
sequence.

The paper is articulated as follows. In Section two we recall some
useful facts. In Section three we present the mathematical formulation
of the entropy analysis by lumping. In Section four we present our
intuitive motivation based on algorithmic arguments while in Section
five we present a central example of an automatic sequence, taken from
the world of nonlinear Science, namely the Feigenbaum sequence. In
Section six we present our main results. In Section seven we speak about
automaticity and algorithmic compressibility measures. In section eight
we analyse exp(w /\/(2)) Finally, in Section nine we draw our main
conclusions and discuss future work.

2. Some definitions

We first recall some useful facts from elementary number theory. Asis
well known, rational numbers can be written in the form of a fraction p/q,
where p and q are integers and irrational ones cannot take this form. The
k-ary expansion of a rational number (for instance the decimal or binary
expansion) is periodic or eventually periodic and conversely. Irrational
numbers form two categories: algebraic irrational and transcendental,
according to whether they can be obtained as roots of a polynomial
with rational coefficients or not. The k-ary expansion of an irrational
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number is necessarily aperiodic. Note that transcendental numbers are
well approzimated by fractions. In 1874 G. Cantor showed that ‘almost
all’ real numbers are transcendental.

A normal number in base k > 2 is a real number z such that, for
each integer d > 1, each block of length d occurs in the k-ary expan-
sion of = with (equal) asymptotic frequency 1/k%. A rational number
is never normal, while there exist numbers which are normal and tran-
scendental, like Champernowne’s number. This number is obtained by
concatenating the decimal expansions of consecutive integers (Champer-
nowne (1933))

0.1234567891011121314...

and it is simultaneously transcendental and normal in base 10.

There is an important and widely believed conjecture, according to
which all algebraic irrational numbers are believed to be normal. But
present techniques fall woefully short on this matter, see Bailey et al
(2004). It seems that E. Borel was the first who explicitly formulated
such a conjecture in the early fifties (Borel (1950)). Actually, normal-
ity is not the best criterion to distinguish between algebraic irrational
and transcendental numbers. In fact, there exist transcendental num-
bers which are normal, like Champernowne’s number (Champernowne
(1933), Chaitin (1994), Allouche (2000)) and probably =
(Schréder (1991), Wagon (1985) Allouche (2000)). One of the first sys-
tematic studies towards this direction dates back to ENIAC also some
fifty years ago (Metropolis et al (1950); Borwein (2003)). No truly ‘nat-
ural’ transcendental number has been shown to be normal in any base,
hence the interest in computation.

3. Entropy analysis by lumping

For reasons both of completeness and for later use, we compile here the
basic ideas of the method of entropy analysis by lumping. We consider a
subsequence of length N selected out of a very long (theoretically infinite)
symbolic sequence. We stipulate that this subsequence is to be read in
terms of distinct ‘blocks’ of length n,

oo dioAn Angy o Azn o Ajnr o Agaiga -

B B, B;'-:—l

We call this reading procedure lumping. We shall employ lumping
throughout the sequel. The following quantities characterize the infor-
mation content of the sequence (Khinchin (1957); Ebeling et al (1991)).
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i) The dynamical (Shannon-like) block-entropy for blocks of length n
is given by

Hn):=— Y p™(A1,...,4:) - lnp™ (A, 4n) (11)
(A1,-..An)

where the probability of occurrence of a block A; ... A, denoted
p™ (A1, ..., Ap), is defined (when it exists) in the statistical limit
as

(m)( A‘ A #of blocks A; ... Ay found when lumping
P bl Total # of blocks found

(1.2)
starting from the beginning of the sequence, and the associate
entropy per letter
H(n)

ot

K = (1.3)

ii) The conditional entropy or entropy excess associated with the ad-
dition of a symbol to the right of an n-block

h(n) =H(n+1) - H(n). (1.4)

iii) The entropy of the source (a topological invariant), defined as the
limit (if it exists)

= li = i (n)
h nll)l& h(n) nll)ngo h (15)
which is the discrete analogue of metric or Kolmogorov entropy.

We now turn to the selection problem, that is to the possibility of
emergence of some preferred configurations (blocks) out of the complete
set of different possibilities. The number of all possible symbolic se-
quences of length n (complerions in the sense of Boltzmann) in a K-letter
alphabet is

Nk = K". (1.6)

Yet not all of these configurations are necessarily realized by the dynam-
ics, nor are they equiprobable. A remarkable theorem due to McMillan
(see Khinchin (1957)), gives a partial answer to the selection problem
asserting that for stationary and ergodic sources the probability of oc-
currence of a block (Aj,...,Ay) is

p™(Ay,...,Ap) ~ e H® (1.7)



Algebraic Dynamics of Gamma Function Values 7

for almost all blocks (Aj,...,Ay,). In order to determine the abundance
of long blocks one is thus led to examine the scaling properties of H(n)
as a function of n.

It is well known that numerically, block entropy is underestimated.
This underestimation of H(n) for large values of n is due to the simple
fact that not all words will be represented adequately if one looks at long
enough samples. The situation becomes more and more prominent for
calculating H(n) by ‘lumping’ instead of ‘gliding’. Indeed in the case of
‘lumping’ an exponentially fast decaying tail towards value zero follows
after an initial plateau.

Since the probabilities of the words of length m are calculated by
their frequencies, i.e. pp = N1/N{sampie] Where Nisampie] is the size of the
available data-sample i.e. the length of the ‘text’ under consideration,
then as N; — 0 for long words, the block entropy calculated will reach
a maximum value, its plateau, at

Hyax = log[K} (N[sample])

where K the length of the alphabet. Indeed, this corresponds to the
maximum value of the entropy for this sample, given when

p(n) = l/N[sample] .

This value corresponds also to an effective maximum word length

Nmaz = In N [sample]

in view of egs. (1), (6) and (7).

For instance, if we have a binary sequence with 10,000 terms, of course
b= 2 and Niggmpie] = 10%. This way, the value of Hy;ax can determine
a safe border for finite size effects. In our case

Hyax = Nmag = In (10%) = 9.2..., (1.8)

so that n,.; = 9 and we can safely consider the entropies until n = 8.
After this small digression, we recall here the main result of the en-
tropy analysis by lumping, see also Karamanos (2001b); Karamanos
(2001c). Let m* be the length of a block encountered when lumping,
H(m¥) the associated block entropy. We recall that, in view of a re-
sult by Cobham (Theorem 3 of Cobham (1972)), a sequence is called
m-automatic if it is the image by a letter to letter projection of the
fixed point of a set of substitutions of constant length m. A substi-
tution is called uniform or of constant length if all the images of the
letters have the same length. For instance, the Feigenbaum symbolic



