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To our friend Sevin



Preface

In September 1994, during an Algebraic Geometry Workshop in Morelia, Mex-
ico, a number of Iberoamerican mathematicians (from Salamanca in Spain, Santiago
and Valparaiso in Chile, and Morelia, Guanajuato and Mexico City in Mexico) who
were working on similar types of problems joined their efforts and decided to meet
again soon.

As a result, in July 1996, a workshop on “Abelian Varieties and Theta func-
tions” was held in Morelia and its proceedings were published in Aportaciones
Matematicas, Serie Investigacion 13, Soc. Mat. Mex. 1998. The strong interest
shown by participants motivated and fueled the idea to create a periodic mathe-
matical framework to communicate, discuss and interact; and it was proposed that
the next meeting should be held in Chile.

This idea was presented (and adhered to enthusiastically) at the Kra Fest at
Stony Brook in 1997, and a multinational alliance (Chile, Mexico, Spain, USA) was
formed to carry it out.

The “I Iberoamerican Congress on Geometry” was held in Olmué, Chile in
January 1998, and its main topic was: The Geometry of Groups — Curves, Abelian
Varieties, Theoretical and Computational Aspects. The congress proceedings were
published in Contemp. Math. 240, AMS 1999. The preface to that volume ex-
pressed the wish for this event to have been a continuation as well as a prelude to
future Iberoamerican meetings.

This hope materialized as the “II Iberoamerican Congress on Geometry” was
held at CIMAT in Guanajuato, Mexico, in January 2001. The main themes there
were Complex Manifolds and Hyperbolic Geometry, and a proceedings was pub-
lished in the current series: Contemp. Math. 311, AMS. 2002. The participants
at the congress agreed that the next meeting would be held in Spain.

As a result the third edition of the Iberoamerican Congress on Geometry was
held at the University of Salamanca, Spain, in June 2004. The main themes here
were Algebraic Curves, Riemann Surfaces, Modular Forms and Hyperbolic Geom-
etry. It was an extremely successful event which provided the Iberoamerican com-
munity of geometers a wonderful opportunity to communicate and discuss their
recent research.

The Salamanca meeting was dedicated to celebrate the 60" birthday of our
friend Sevin Recillas. He was a big creator of mathematics, friendships and research
groups.

There are some mathematicians who prefer to work from behind the scenes.
Sevin was of that kind, but just by looking a little deeper and asking a senior
colleague or a young mathematician, one can find the deepest gratitude to him: a
reflection on the beauty of mathematics, a loaned car, a big favor done, a good
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reference letter, some encouraging words at a critical moment ... These are some
of the many different ways that he found to help, encourage, support and push
forward those around him. Often these kinds of people are recognized after passing
away. We were indeed fortunate to have given it to him before it was too late.

We would like to acknowledge the Institutions that financially supported the
meeting and the participants, and thus made this congress possible. Funding came
from Spain (University of Salamanca, DGI grant BFM2002-12288-E, Junta de
Castilla y Leén and Caja Duero), United States of America (NSF grant DMS-
0342699) and Chile (Fondecyt grant 1030595).

Our appreciation goes also to Ms. Christine M. Thivierge, Editorial Assistant to
the Contemporary Mathematics series of AMS, and to Professors Esteban Gémez-
Gonzalez and Francisco Plaza-Martin from Salamanca, all of whom have greatly
contributed to the publication of this proceedings.

After the congress, we have agreed to celebrate the next meeting in Ouro Preto,
Brasil, in August 2007. We hope that the fourth event will turn out to be equally
successful!

José M. Munoz Porras
Sorin Popescu
Rubi E. Rodriguez
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Mobius Transformations of the Circle Form a Maximal
Convergence Group

Ara Basmajian and Mahmoud Zeinalian

ABSTRACT. We investigate the relationship between quasisymmetric and con-
vergence groups acting on the circle. We show that the Mobius transforma-
tions of the circle form a maximal convergence group. This completes the
characterization of the M&bius group as a maximal convergence group acting
on the sphere. Previously, Gehring and Martin had shown the maximality of
the Mobius group on spheres of dimension greater than one. Maximality of
the isometry (conformal) group of the hyperbolic plane as a uniform quasi-
isometry group, uniformly quasiconformal group, and as a convergence group
in which each element is topologically conjugate to an isometry may be viewed
as consequences.

1. Introduction

The isometries of real hyperbolic space of dimension two or higher induce con-
formal diffeomorphisms on its ideal boundary. In fact, if the dimension is strictly
greater than two, then all conformal diffeomorphisms will arise in this way. In con-
trast, in dimension two, conformality on the boundary is a trivial condition. For
instance, every diffeomorphism of a Riemannian circle preserves the conformal class
of the metric. It is for this reason that the study of the group of M&bius transforma-
tions of the circle differs from its higher dimensional cousins. In the paper [Ge-M],
Gehring and Martin show that the Mdbius group is a maximal convergence group
acting on the boundary of real hyperbolic space of dimension greater than two.
This result was extended (see [B-Z]) to the action of the isometry group of a rank
one symmetric space of noncompact type except the hyperbolic plane.

In this note, we complete the characterization of the Mobius group as a maxi-
mal convergence group by considering the remaining case of the hyperbolic plane;
namely, the group of Mobius transformations of the circle acts as a maximal conver-
gence group (Theorem 3.3). Other maximality statements, such as the maximality
of the isometry (conformal) group of the hyperbolic plane as a uniform quasi-
isometry group and a uniformly quasiconformal group (see Corollary 4.2 and the
discussion at the end of that section) may be regarded as consequences of The-
orem 3.3. See [Gr-P]| for further discussion on quasi-isometry groups. Another
implication is the maximality of the isometry group of the hyperbolic plane as a

2000 Mathematics Subject Classification. Primary 30062, Secondary 30F40.
Key words and phrases. convergence group, quasisymmetric, Mébius.

(©2006 American Mathematical Society



2 ARA BASMAJIAN AND MAHMOUD ZEINALIAN

convergence group in which each element is topologically conjugate to an isometry
(Corollary 4.3).

Let X be a compact topological space. A family F of orientation preserving
homeomorphisms of X is said to have the convergence property if each infinite
sequence {f,} of F contains a subsequence which,

C1: converges uniformly to a homeomorphism of X, or

C2: has the attractor-repeller property, that is, there exists a point a € X,
the attractor, and a point r € X, the repeller, so that the {f,} converge
to the constant function a, uniformly outside of any open neighborhood
of . Note that a may equal r.

We remark that the convergence groups considered in this paper are comprised
only of orientation preserving homeomorphisms. We could equally as well include
orientation reversing homeomorphisms, in which case the theorems in this paper
have obvious modifications that are left to the reader. Hence, whenever homeomor-
phism is mentioned in this paper it is assumed to be orientation preserving.

2. Elementary facts about quasisymmetric mappings

In this section, we assemble some elementary facts which will be needed later in
the paper. For the basics on quasisymmetric and quasiconformal maps, we refer to
the following papers and books: [A], [D-E], [Ga-L], [H], [L], and [V]. For Mébius
groups and hyperbolic geometry, the reader may consult [Be] or [M].

Let H denote the upper half plane, endowed with the hyperbolic metric, and
R=RU {o0} denote its ideal boundary. R can be identified with the unit circle S*.
The group PSL(2,R) = {z — ?;j_s ca,b,c,d € Riad — be = 1} is the full group of
orientation preserving isometries of H. This group is also the full group of conformal

homeomorphisms of H. Let M6b+(]@) denote the group of homeomorphisms of R
which are induced by the isometries of H. Note that PSL(2,R) and M6b+(@) are
isomorphic groups which act on different spaces.

When dealing with mappings of the circle we will need to normalize by post
composition using an element of Mob™ (H/i) so that infinity is a fixed point of the
map. Observe that an element of the stabilizer of co in M'db+(]1/\%) is a linear map,
x — mzx + b, where m > 0 and b € R. Hence given a symmetric configuration of
point triples, {x — t,z,x + t}, its image remains a symmetric configuration.

DEFINITION 2.1. Let f: R — R be an orientation preserving homeomorphism
and & > 0. The homeomorphism f is called k-quasisymmetric if after normalizing
so that it fixes infinity, f satisfies,

L _ flz+t)~ f(a)

ES f@) = flo—1)
for all x € R and all ¢ > 0. In other words, the image of equal length juxtaposed
intervals has uniform bounded length ratio.

IN

k

Given the observation preceding Definition 2.1, it is easy to see that the condi-
tion of being k-quasisymmetric is independent of the normalizing Mobius transfor-
mation, the elements of Mélﬁ([@) are l-quasisymmetric, and that post or precom-
position by linear maps does not change the quasisymmetric constant.

In the sequel, we will need the fact that MébJr(I@) is the full group of 1-
quasisymmetric homeomorphisms. To see this, using the triple transitivity of
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1\16b+(ﬂ/§) it is enough to show that a 1- quasibymmctric mapping [ which fixes
0,1, and oo is the identity. Now, the triple {0, 3 7,1} must be taken to a symmetric
triple, hence f also fixes % Similar considerations allow us to conclude that all
rationals of the form g are fixed. Finally, using continuity, f must fix every real
number and thus is the identity homeomorphism.

The following proposition is a classical result. See Ahlfors [A] or Lehto [L] for

reference.

PROPOSITION 2.2. Let f : R — R be an increasing homeomorphism with
f(o0) = 00. Assume that

L f+t) - )

k™ flz) = flz—1)
for all x and all t > 0. Then there exists a K(k) -quasiconformal homeomorphism
of H which extends f. The number K (k) depends only on k.

<k

3. Maximality of Méb* (R)

A family F is said to be uniformly quasisymmetric (quasiconformal) if all the
maps in F are k-quasisymmetric (K-quasiconformal) for some k (for some K).

PROPOSITION 3.1. A uniformly quasisymmetric family F of homeomorphisms
ofR 15 a convergence family. In particular, Mob+( ) is a convergence group.

Proor. Using Proposition 2.2, there exists a number K such that every ele-
ment of this family can be extended to a K-quasiconformal mapping of H. Using
the fact that a sequence of distinct K-quasiconformal mappings of H has a sub-
sequence which either converges to a K-quasiconformal map or has the attractor-
repeller property with attractor and repeller on the boundary (see [V], Corollaries
19.3 and 37.4, or extend each map in F to S? by reflection and use the results of
[Ge-M]), we may conclude it acts as a convergence family on S'. O

PROPOSITION 3.2. Let F be a family of homeomorphisms of]]AQ which is closed
under post and precomposition by elements of Méb* (R). Then F has the conver-
gence property if and only if F is a uniformly quasisymmetric family.

PROOF. Suppose F has the convergence property. Let

(1) F ={feF:f0)=0,f(1)=1, and f(00) = co}.

Since F' has the convergence property, it must be that there are negative constants
M and m so that, m < f(—=1) < M <0, for all f € F'. Any element of F can be
post composed by an element of Méb ™ (I?&) to yield an element of F’. Since any triple
{z—t,z,2+t} in R can be moved by Euclidean translation and dilation to {—1,0, 1},
we may conclude that the elements of F form a uniformly quasisymmetric family.

The converse fellows from Proposition 3.1.
O

THEOREM 3.3. Mé'b+(]1§) acts on R as @ mazimal convergence group. That is,
there is no convergence group that properly contains Méb™ (R).

PROOF. The fact that Mob™(R) is a convergence group follows from Propo-
sition 3.1. Next let G be a convergence group acting on R containing Mob+( ).
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Using Proposition 3.2, we know that the action of (¢ is as a uniformly quasisymmet-
ric group. On the other hand, suppose there exists an element g € G not contained
in Mob™ (HAQ) This means that after normalizing ¢, so that it fixes oo, there must
be three symmetrically spaced points in R where the quasisymmetric constant is
not 1. Post and precomposing by Euclidean translations and dilations, we may as-
sume that the three points are {—1,0,1} and that g fixes 0 and 1. Since Euclidean
translation and dilation do not effect the quasisymmetric constant for a triple, it
must be that g does not fix —1. By possibly replacing g with ¢~!, we may assume
that g takes —1 into the interval (—1,0). Clearly g"(—1) is an increasing sequence
of negative numbers and hence has a limit y which is necessarily a fixed point of
g. Since < g > is a convergence group, y is strictly less than 0. Next consider the
triple of points {—1,y,0}. The length ratio of the juxtaposed intervals [~1,y] and
[y, 0] is,

ly— (=D Jy+1]
The length ratio of image intervals under the iterates of g are

(3) l9"(0) —g" ()| _ |l
lg™(y) —g*(=1)| |y —g"(-1)|
which goes to oo, as n — oo. This contradicts the fact that G is uniformly qua-

sisymmetric. Hence, it must be that the quasisymmetric constant for g is 1, and
thus g € Méb™ (R). O

@) 10—yl Y]

4. Maximality of PSL(2,R)

An immediate corollary of Theorem 3.3 is,

COROLLARY 4.1. The Mobius group, Mdb*(ﬂi), is a maximal uniformly qua-
stsymmetric group.

A homeomorphism f : H — H is said to be a quasi-isometry if there exist
positive constants A and B so that

(4) A7Yd(21,32) — B < d(f(21), f(x2)) < Ad(z1,22) + B

for all xy,29 € H. The constant A is referred to as the Lipschitz constant of the
quasi-isometry. For a general reference on quasi-isometries, we refer the reader
to [Gr-P]. It is well known that a quasi-isometry continuously extends to the
boundary and that the induced map on the boundary is a quasisymmetric home-
omorphism. One defines an equivalence relation on quasi-isometries by declaring
two to be equivalent if they induce the same homeomorphism on the boundary.
Let QI(H) denote the group of equivalence classes of quasi-isometries of H. Since
the natural map from PSL(2,R) into QI(H) is injective, we will continue to denote
its image with the same notation. A family F C QI(H) is said to be a uniformly
quasi-isometric family if each equivalence class has Lipschitz constant less than a
uniform bound. The following is a simple consequence of Theorem 3.3, observed in
Gromov and Pansu (see [Gr-PJ).

COROLLARY 4.2. Let G < QI(H) be a uniform quasi-isometry group acting on
the hyperbolic plane H. If PSL(2,R) < G, then G = PSL(2,R).
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PRrROOF. A quasi-isometry f of H extends to a homeomorphism of HUR. More-
7 on Risa quasisymmetric mapping where the qua-
sisymmetric constant depends only on the Lipschitz constant of the quasi-isometry.
Consider the homomorphism ¢ : G — Homeo(R), given by [f] +— flg- Note

that Image(¢) is a uniformly quasisymmetric group which contains Mébﬂﬂi). By
Proposition 3.1, Image(¢) is a convergence group. Since M6b+(]1§) is a maximal
convergence group (Theorem 3.3), Image(¢) equals M(')'bJr(I@). Injectivity of ¢
is a tautology. Since Image(¢) = ¢(PSL(2,R)) = M(’jb+(ﬂ§), we conclude that
G = PSL(2,R). O

As in the proof above, it is easy to see that a convergence group acting on
HUR which contains PSL(2,R) induces the action of Mob+( ) on the boundary, R.
Furthermore, if each element of this convergence group is topologically conjugate
to an element of PSL(2,R), then the induced action has trivial kernel. Hence
the natural homomorphism given by restriction of the convergence group to the
boundary is in fact an isomorphism onto Méb™ (R). Since the image of PSL(2,R)
is Mébﬂl@)7 it must be that the convergence group equals PSL(2,R). We have
proven,

COROLLARY 4.3. Let G be a convergence group acting on H U R. Suppose
that every element of G is topologically conjugate to an element of PSL(2,R). If
PSL(2,R) < G, then G = PSL(2,R). The conjugating homeomorphism need not be
the same for all elements of G.

The reader should compare the above corollary to the fact that PSL(2,R) is a
maximal uniformly quasiconformal group acting on H. That is, if G is a uniformly
quasiconformal group containing PSL(2,R), then G = PSL(2,R). This fact follows
from the results of [S] and [T].
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