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ELEMENTS OF TRIGONOMETRY



Preface

ELEMENTS OF TRIGONOMETRY is suitable for any beginning course
designed either for terminal students or for those who will continue
to study mathematics.

We begin with a brief review of basic topics, including set theory,
relations, and functions. Because these concepts are used throughout
the remainder of the text, students who are unfamiliar with them should
study these topics carefully before proceeding.

In Chapters 2 through 5 we present the trigonometric functions, iden-
tities, graphs of trigonometric functions, and inverse trigonometric
relations and functions. Graphs of the trigonometric functions, their
corresponding inverse relations and functions, along with the properties
of each, are covered thoroughly. In these chapters we also introduce the
student to such concepts as circular functions, simple harmonic motion,
and polar coordinates.

In Chapters 6, 8, 9, and 10 we present applications of the trigonometric
functions to triangles, equations, vectors, and complex numbers. While
we treat solutions of triangles, including right triangles, we do not
emphasize this subject. The many methods for solving trigonometric
equations are explained by means of illustrations. Next, we show the
application of the polar coordinate system to systems of trigonometric
equations, along with an introduction to vectors and their applications.
Utilizing this work with vectors, we study complex variables. To sim-
plify computations in these chapters, we have used three-place tables.

Chapter 7 is a concise, yet self-contained, presentation of exponential
and logarithmic functions, including applications of logarithms. Here
we use the conventional four-place tables in calculations.

Chapter 11, a Compendium of Exercises, gives the student an oppor-
tunity to perfect his skills by solving a wide variety of problems varying
in degree of sophistication. Because these problems are an integral
part of the presentation, each class should solve a number of them. Stu-
dents may attempt some of the problems after mastering the material
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on identities. Many of the problems are rather simple. For those that
are more difficult, we have provided hints.

Appendix I is an introduction to finite mathematical induction, a
rather thorough study for this level. Several illustrations are developed
in detail, and a problem set with answers is included.

A course based on this book may be presented in at least two ways,
depending on the preparation of the students. Some classes may review
Chapters 1 and 7, study Chapters 2 through 11, and if time permits
Appendix 1. Classes that are not well prepared should study the first
six chapters and Chapter 8, as the core of the course.

The book includes a sufficient number of problems for either ap-
proach. Answers to nearly half the problems appear in the book itself;
the remaining answers are available in a Solutions Manual.

As with any textbook, the ideas underlying this one were drawn from
many sources and refined by many suggestions. We wish, therefore, to
acknowledge our debt to our former teachers, our colleagues, and our
students. In particular, we wish to thank the professors and students
who used this text in a preliminary edition during the 1966 — 67 academic
year. Special thanks are due Mrs. Lucille Moore, who not only typed the
preliminary edition, but also typed and helped to edit the revised manu-
script and the Solutions Manual.

TULLIO J. PIGNANI
PAUL W. HAGGARD



JOHN B. WELLS, JR., formerly a professor of
the Mathematics Department at the University
of Kentucky and a co-author of the first draft
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1-1 SETS

The theory of sets is a useful mathematical tool for many studies, includ-
ing the physical and biological sciences, engineering, and economics.
Although the concept of a set is of fundamental importance in mathe-
matics, the word “set” will not be defined. Here, only an intuitive under-
standing of this concept is required. A similar demand was made when
the reader encountered the words “point” and “straight line” in ge-
ometry. To illustrate this, consider your own trigonometry class. The
members of this set (called a class) are those and only those students
who officially enrolled for this class.

In general, upper case letters will be used to name sets, while lower
case letters will denote elements of sets. If A is a set, the notation a € A
indicates that a is an element (or member) of set A. When the element b
is not an element of set A, this is indicated as b ¢ A. The symbol € is used
only between a symbol that represents an element of a set and a sym-
bol that represents the set; it is not used between the symbols repre-
senting either two sets or two elements.

In general, there are two ways of describing a set—the roster method
and the rule method. The set notation {. . .} is used in both descriptions.
It is important that a set be described precisely so that no confusion
exists regarding what is in the set and what is not.

The roster method requires that the elements of the set be listed. For
example, if Mary, Bill, and Jane are the members of a set, say A, then
the description is given as A= {Mary, Bill, Jane}. This collection of
symbols means and is read as “A is the set consisting of Mary, Bill, and
Jane,” or “A is the set whose elements are Mary, Bill, and Jane.”

The rule method of describing a set A requires that a rule be given
such that a is a member of A, provided a satisfies the rule. Furthermore,
only those elements that satisfy the given rule will be members of the
set. In this case, the mathematical statement is {x | the rule given here
is satisfied} and means “the set of all x such that the rule given here is
satisfied.” If A= {1, 2, 3, 4}, then A= {x|x is a positive integer, and
x < 5}. A second example of the rule method is to let A= {2, 4, 6, 8,10};
then, A= {2x|x is a positive integer, and x < 6} or A= {x|x is an even
positive integer, and x < 12}. Since there are many ways to state arule,
there are many ways to describe a particular set by the rule method.

We shall use the letter I+ to denote the set of positive integers; that is,
N=1{1,2,3,. ..}, where. . . means that the established pattern is to be
continued. In the case of the rule method, a description of I* could be
I+ = {x|x is a positive integer}.



