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Preface

The International Workshop on Hybrid Metaheuristics is now an established
event and reaches its fourth edition with HM 2007. One of the main motivations
for initiating it was the need for a forum to discuss specific aspects of hybridiza-
tion of metaheuristics. Hybrid metaheuristics design, development and testing
require a combination of skills and a sound methodology. In particular, com-
parisons among hybrid techniques and assessment of their performance have to
be supported by a sound experimental methodology, and one of the mainstream
issues of the workshop is to promote agreed standard experimental methodolo-
gies. These motivations are still among the driving forces behind the workshop
and, in these four years, we have observed an increasing attention to methodolog-
ical aspects, from both the empirical and theoretical sides. The papers selected
for presentation at HM 2007 are indeed a representative sample of research in
the field of hybrid metaheuristics. They range from methodological to applica-
tion papers. Moreover, some of them put special emphasis on the experimental
analysis and statistical assessment of results.

Among the publications in this selection, there are some that focus on the
integration of metaheuristics with mathematical programming, constraint sat-
isfaction or machine learning techniques. This interdisciplinary subject is now
widely recognized as one of the most effective approaches for tackling hard prob-
lems, and there is still room for new results. To achieve them, the community
needs to be open toward other research communities dealing with problem solv-
ing, such as those belonging to artificial intelligence (AI) and operations research
(OR).

We also note that the use of software libraries for implementing metaheuris-
tics is increasing, even though we have to observe that the users of a software
library are usually its developers, thus reducing the advantages in terms of
software design and development. We believe that this situation is going to
change in favor of a scenario in which some libraries will be used by most meta-
heuristic developers.

Finally, there are also some works describing applications of metaheuris-
tics in continuous optimization. The cross-fertilization between combinatorial
and continuous optimization is extremely important, especially because many
real-world problems can be naturally modeled as mixtures of discrete and con-
tinuous components.

It is already a tradition of the workshop to keep the acceptance rate of papers
relatively low: this makes it possible to publish official proceedings, which can
be taken as one of the main references in the field. Besides this, special care
is taken with respect to the reviewing process, during which the authors are
provided with constructive and detailed reviews. For this reason, the role of the
Program Committee members is crucial, and we are very grateful to them for the
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effort they made examining the papers and providing detailed reviews. Among
the 37 submissions received, 14 papers have been selected on the basis of the
Program Committee members’ suggestions. We are further grateful to Catherine
C. McGeoch and Thomas Stiitzle, who both accepted our invitation to give an
overview talk.

Looking back to the previous editions of the workshop, we observe a positive
trend concerning experimental methodology. Moreover, some topics, such as the
integration of metaheuristics with OR and Al techniques, have become estab-
lished themes. We believe that a grounded discipline in hybrid metaheuristics
could bring advantages in problem solving in many areas, such as constrained
optimization, mixed integer optimization and also stochastic and online prob-
lems, which are probably one of the new frontiers still to be fully explored.
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Evolutionary Local Search for the Super-Peer
Selection Problem and the p-Hub Median
Problem

Steffen Wolf and Peter Merz

Distributed Algorithms Group
University of Kaiserslautern, Germany
{pmerz,wolf}@informatik.uni-kl.de

Abstract. Scalability constitutes a key property in Peer-to-Peer envi-
ronments. One way to foster this property is the introduction of super-
peers, a concept which has gained widespread acceptance in recent years.
However, the problem of finding the set of super-peers that minimizes the
total communication cost is NP-hard. We present a new heuristic based
on Evolutionary Techniques and Local Search to solve this problem. Us-
ing actual Internet distance measurements, we demonstrate the savings
in total communication cost attainable by such a super-peer topology.
Our heuristic can also be applied to the more general Uncapacitated Sin-
gle Assignment p-Hub Median Problem. The Local Search is then fur-
ther enhanced by generalized don’t look bits. We show that our heuristic
is competitive with other heuristics even in this general problem, and
present new best solutions for the largest instances in the well known
Australia Post data set.

1 Introduction

During recent years evolutionary algorithms enhanced with local search have
been used to solve many NP-hard optimization problems [1,2,3,4]. These heuris-
tics take their power from the problem specific local search, while keeping all
favorable features of the evolutionary approach.

We are especially interested in optimization problems connected with topology
construction in Peer-to-Peer (P2P) systems. Well-known properties of these fully
decentralized P2P systems include self-organizing and fault-tolerant behavior.
In contrast to centralized systems, they usually possess neither a single point of
failure nor other bottlenecks that affect the entire network at once. However, the
scalability of such networks becomes an issue in the case of excessive growth:
Communication times tend to increase and the load put on every node grows
heavily when the networks get larger. A possible solution to this issue is the
introduction of super-peers. Super-peers are peers that act as servers for a number
of attached common peers, while at the same time, they form a network of equals
among themselves. In a super-peer enhanced P2P network, each common peer is
attached to exactly one super-peer, which constitutes its link to the remainder
of the network. All traffic will be routed via the super-peers [5,6].

T. Bartz-Beielstein et al. (Eds.): HM 2007, LNCS 4771, pp. 1-15, 2007.
(© Springer-Verlag Berlin Heidelberg 2007



2 S. Wolf and P. Merz

To ensure smooth operation, the peers generally wish to maintain low-delay
connections to the other peers. Hence, minimum communication cost is the aim
when designing super-peer P2P networks. In this paper, we present a heuristic
combining local search with evolutionary techniques for the Super-Peer Selection
Problem (SPSP), i.e. the problem of finding the set of super-peers and the
assignment of all other peers that minimizes the total communication cost.

Our special interest lies in the construction of these P2P overlay topologies.
However, the problem of selecting the super-peers is strongly related to a hub
location problem: the Uncapacitated Single Assignment p-Hub Median Problem
(USApHMP) [7]. The USApHMP is a well known optimization problem and has
received much attention in the last two decades. With minor adjustments, our
heuristic can also be used for the USApHMP, which allows the comparison with
other algorithms on established standard test cases.

This paper is organized as follows. In Section 2, we provide an overview of
related work. In Section 3, we propose our Super-Peer Selection Heuristic. In
Section 4, we present results from experiments on real world Internet data for
the Super-Peer Selection Problem, as well as on standard test cases for the
USApHMP, and compare the results with those of other recently published al-
gorithms. The paper concludes with an outline for future research in Section 5.

2 Related Work

The Super-Peer Selection Problem, as proposed here, has not yet been studied in
the literature. However, algorithms designed for the USApHMP can also be used
for SPSP. The USApHMP has achieved much attention since it was presented
by O’Kelly in [7], along with a set of test cases called CAB. Later, O'Kelly et al.
also presented means of computing lower bounds for these problems [8]. Exact
solutions have been computed by Ernst and Krishnamoorthy for problems with
up to 50 nodes in [9]. In this paper, they also introduced a new test set called
AP. Ebery presented two more efficient mixed integer linear programs (MILP)
for the special case of only 2 or 3 hubs [10], and thus solved a problem with
200 nodes (2 hubs), and a problem with 140 nodes (3 hubs). Also, the authors
of [9] presented a Simulated Annealing heuristic that found good solutions for
problems with up to 200 nodes.

Skorin-Kapov etal. presented TABUHUB [11], a heuristic method based on
tabu search. Results were presented only for the smallest problems of the CAB
set (n < 25). Also, neural network approaches have been proposed for the
USApHMP. In [12], the memory consumption and the CPU time for these ap-
proaches was reduced. However, the neural network approach was again only
applied to the smallest problems in the CAB set (n < 15). Unfortunately, no
computation times are given, making comparisons with other heuristics difficult.

The most promising heuristic for the USApHMP so far has been presented
by Pérez etal. in [13]. It is a hybrid heuristic combining Path Relinking [14]
and Variable Neighborhood Search. The heuristic has proven to be very fast
with both the CAB and AP sets, faster than any other heuristic. However, it
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failed to find the optimum in some of the smaller CAB instances and still left
room for improvements in the larger instances of the AP set. The local search
neighborhoods used in this heuristic differ from the ones used here. Especially,
the most expensive neighborhood is missing in [13]. This explains the speed as
well as the loss of quality.

Two Genetic Algorithms have been presented by Kratica etal. [15]. These
GAs are based on different representations and genetic operations. Both feature
a mutation operator that favors the assignment of peers to closer super-peers,
as well as a sophisticated recombination. The results of the second GA are the
best results so far, as they improved the solutions for the larger AP instances
found in [13]. However, the approach does not include a local search, and can
still be improved. As far as we know, the heuristic we present in this paper is
the first heuristic combining evolutionary techniques with local search.

3 Super-Peer Selection

When constructing a communication cost efficient and load balanced P2P topol-
ogy we strive for a topology in which a subset of the nodes will function as
super-peers while the rest of the nodes, henceforth called edge peers, is each
assigned to one of the super-peers. Adhering to the established properties of
super-peer overlay structures, the super-peers are fully connected among them-
selves and are able to communicate directly with the edge peers assigned to them
and with their fellow super-peers. Essentially, the super-peers are forming the
core of the network. The edge peers, however, will need to route any communi-
cation via their assigned super-peer. An example of such a super-peer topology
is shown in Fig. 1. Using a topology of this kind, the communication between
edge peers p; and p;; is routed via the super-peers ¢; and c¢4. A broadcast in
such a topology can be efficiently performed by having one super-peer send the
broadcast to all other super-peers, which then forward the message to their re-
spective edge peers. To ensure smooth operation and to ease the load on each
peer, the number of super-peers should be limited as well as the number of peers
connected to a super-peer.

The Super-Peer Selection Problem can be defined as finding the super-peer
topology, i.e. the set of super-peers and the assignment of the edge peers to
the super-peers, with minimal total communication cost for a given network.
In a P2P setting, this cost can be thought of as the total all-pairs end-to-end
communication delay.

3.1 Background

The SPSP is NP-hard [16]. It may be cast as a special case of the Hub Location
Problem, first formulated by O’Kelly [7] as a Quadratic Integer Program. In the
Hub Location Problem, a number of nodes, the so-called hubs, assume hierar-
chical superiority over common nodes, a property equivalent to the super-peer
concept. Basically, given a network G = (V, E) with n = |V| nodes, p nodes
are to be selected as hubs. Let x;; be a binary variable denoting that node 2
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Fig. 1. Example of a P2P network with selected Super-Peers

is assigned to node k if and only if z;;, = 1. If zxx = 1, node k is chosen as a
hub. The flow volume between any two nodes 7 # j is equal to one unit of flow.
Since all flow is routed over the hubs, the actual weight on the inter-hub links is
usually larger than one. The transportation cost of one unit of flow on the direct
link between nodes 7 and j amounts to d;;. Now, the SPSP formulated as a Hub
Location Problem is

n n

min Z = Z Z Z (dik + dim + dmj) - Tik * Tim (1)
=1

i=1 j=1,j#i k=1m

s.t.

.'L‘ijngj i,jzl,...,n (2)
Z.’L‘ijzl i:l,...,n (3)
j=1
n
> &5 =p (4)
j=1

.’EUE{O,l} g = Llj:ss; 1 (5)

Equation (1) yields the total communication cost Z. The set of constraints (2)
ensures that nodes are assigned only to hubs, while (3) enforces the allocation of
a node to exactly one hub. Due to constraint (4), there will be exactly p hubs.

A more general formulation uses a demand matrix W = (w;;). Here, w;;
denotes the flow from node 7 to j in flow units. Also, special discount factors
can be applied for the different edge types. Flow between hubs is subject to a
discount factor 0 < a < 1, flow from a node to its hub is multiplied by a factor
4, and flow from a hub to a common node is multiplied by a factor x. The total
communication cost Z is then:
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i=1 j=1 k=1 m=1

The distinction between the different types of edges is motivated by an appli-
cation in the area of mail transport. Here, the distribution cost differs from the
collection cost. Also, the transportation cost between the hubs is assumed to be
lower since more efficient means of transport can be used for the accumulated
amount of flow. This extension might also be applied in the case of communi-
cation networks, especially when asymmetric links are considered. However, the
most important difference from the SPSP is the introduction of demand factors
wi;, as will be shown in Section 3.3.

Since the objective function in both programs is quadratic and nonconvex,
no efficient way to compute the minimum is known. The usual approach is to
transform the problem into a Mixed Integer Linear Program (MILP). A straight-
forward linearization uses O(n?*) variables. We resort to an MILP formulation
using as few as O(n?) variables [17]:

minZ:ZZ (x-O; +9d-D;) di - wuﬁ-zzza dir - Yk (7)

i=1 k=1 i=1 k=1 [=1

s.t. (2), (3), (4), (5),
Z(yikz—yuk)=Oi'$ik—2w¢j-xjk hk=1,...,n (8)
=1 j=1

Yikr = 0 Hkl= 15,0 (9)

Here, O; = 7, wjj is the outgoing flow for node i and D; = Y77 | wi; is
the demand of node j. Both values can be calculated directly from the problem
instance. The variables y;x; denote the flow volume from hub & to hub ! which
has originated at peer i. Constraints (8) and (9) ensure flow conservation at each
node.

An MILP formulation for the SPSP can be derived by fixing x =6 = a =1,
wi; =1 for i # j, wy; =0, and thus O; = D; =n — 1:

n n n n n

minZ=222-(n—1)'dik'$¢k+zzzdkl'yikl (10)
i=1 k=1 i=1 k=1 =1
s-t. (2), (3), (4), (5), (9),
Z(yikl—yilk):(n—l)-xik— Z Tk Lok = s e s i (11)
1=1 J=1,j#i
The factor 2 - (n — 1) for the edge-peer to super-peer links in (10) is the number
of connections using this link. It is based on the assumption that every edge peer

needs to communicate with all other n — 1 peers, and all other peers need to
communicate with this edge peer.
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s «— INITIALIZATION(p)
s « LOCALSEARCH(s)
B—n
while — stopping criterion do
fori=1...m do
s; < MUTATION(f3, s)
8; «+— LOCALSEARCH(S;)
end for
min = argmin;{Z(s;)}
if Z(Smin) < Z(s) then
8 ¢— Smin
else
B — max{0.8 - 3,2}
end if
end while

Initialization

Local Search

no

Fig. 2. General overview of the Super-Peer Selection Heuristic

These formulations are equivalent to the quadratic formulation only if the
distances d;; observe the triangle inequality. Otherwise, the model will generate
solutions featuring the property that messages are sent along shortest paths
between two hub instead of the intended direct link. The model can still be used
for such networks. However, the resulting value can only serve as a lower bound.

The formulation above enables the exact solution of moderately-sized prob-
lems (up to 50 peers) in reasonable time, and additionally, the computation of
lower bounds for larger networks (up to 150 peers) using its LP relaxation. For
networks larger than the given threshold, we use the lower bounds described in
[8]. Finally, the sum of all shortest paths’ weights yields another lower bound.

3.2 Super-Peer Selection Heuristic

The Super-Peer Selection Heuristic presented here is based on evolutionary algo-
rithms and local search. It operates on a global view of the network. The general
work flow is shown in Fig. 2. The heuristic is quite similar to iterated local search
[18], but uses more than one offspring solution in each generation.

Representation. A solution is represented by the assignment vector s. For
each peer ¢ the value s(¢) represents the super-peer of i: x; ;) = 1. All super-
peers, the set of which will be denoted by C, are assumed to be assigned to
themselves, i.e. Vi € C : s(i) = i. For the sake of swift computation, we also
store the current capacities of the super-peers, i. e. the number of peers connected
to the super-peer: |Vi| = |{i € V| s(¢) = k}|. This set also includes the super-
peer itself: k € Vj. The sets V} are not stored explicitly, but are defined by the
assignment vector s.

Initialization. The initial solution is created by randomly selecting p peers as
super-peers, and assigning all remaining peers to the nearest super-peer. When
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handling problems with missing links, this procedure is repeated if the initial set
of super-peers is not fully connected.

Local Search. After each step of the Evolutionary Algorithm a local search
is applied to further improve the current solution. We use three different neigh-
borhoods: replacing the super-peer, swapping two peers and reassigning a peer to
another super-peer. If a neighborhood does not yield an improvement, the next
neighborhood is used.

In the first neighborhood the local search tries to replace a super-peer by one
of its children. The former child becomes the new super-peer and every other
peer that was connected to the old super-peer is reconnected to the new super-
peer. The gain of such a move can be computed in O(n) time. The following
formula gives the gain for replacing super-peer k with 2:

Greplace(i» k) = D 2+ [Vil - [Vj| - (dig — di) + D 2- (n = 1) - (dij — dij) (12)
jec JEVR
If the gain of this move is Greplace (%, k) > 0, the move is applied.

The second neighborhood tries to exchange the assignment of two peers. The
gain of such a move can be computed in O(1) time. Since all peers connected to
other super-peers are considered as the exchange partner, the total time com-
plexity for searching this neighborhood is O(n). Using the same notation as be-
fore, the following formula gives the gain for swapping the assignments of peers
¢ and j:

Gawap(1,5) =2 (n— 1) - (di s(3) + dj,s(5) — Dirs(s) — Biys(3)) (13)

The move with the highest gain is applied if its gain is Gswap(Z,7) > 0.

The third neighborhood covers the reassignment of a peer to another super-
peer. Here, it is important that the capacity limits of the involved super-peers
are observed. The gain of reassigning peer ¢ to super-peer k can be calculated in
O(p) time:

Greassign(ia k) = 2 (n - 1) ! (di,s(i) - di,k)
+2- (Vs l - Vil = Vel = 1) - (IVk| + 1)) - dagay

+2- ) Vil (diy,j — diig) (14)
J€C\{k,s(i)}

The first part of this equation gives the gain on the link between peer 7 and its
super-peer. The second part gives the gain on the link between the old and the
new super-peer. The third part gives the gain on all remaining intra-core links.
Out of all super-peers only the one with the highest gain is chosen, thus yielding
a total time complexity of O(p?). The move is applied only if the total gain is
Greassign (7;7 k) > 0.

These local search steps are performed for each peer i. The local search is
restarted whenever an improving step was found and applied. The local search
is thus repeated until no improvement for any peer ¢ can be found, i.e. a local
optimum has been reached. Since all peers i € V are considered in these moves,
the time complexity for searching the whole neighborhood is O(n?).
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Mutation. Since local search alone will get stuck in local optima, we use mu-
tation to continue the search. Mutation is done by swapping two random peers.
Again, the “gain” of such a swap can be computed by (13). Several mutation steps
are applied in each round. The number of mutations is adapted to the success rate.
The algorithm starts with 8 = n mutations. If no better solution is found in one
generation, the mutation rate (3 is reduced by 20 %. In each round at least two mu-
tations are applied. This way, the algorithm can adapt to the best mutation rate
for the individual problem and for the phase of the search. It is our experience that
it is favorable to search the whole search space in the beginning, but narrow the
search over time, thus gradually shifting exploration to exploitation.

Population. Our heuristic uses a population of only one individual. There is
no need for recombination. This is mainly motivated by the high computation
cost and solution quality of the local search. Using mutation and local search, m
offspring solutions are created. The best solution is used as the next generation
only if it yielded an improvement. This follows a (1 4+ m) selection paradigm. If
there was no improvement in the m children, the mutation rate 3 is reduced as
described before.

Stopping criterion. The heuristic is stopped after five consecutive generations
without an improvement. This value is a compromise between solution quality
and computation time. In the smaller instances the heuristic often finds the
optimum in the first or second generation. Continuing the search would mean to
waste time. We also stopped the heuristic after 40 generations regardless of recent
improvements. Both values were chosen based on preliminary experiments.

3.3 Adaptation for the USApHMP

The USApHMP introduces weights w;; on the connections between the nodes.
While these weights have been equal for all node pairs in the Super-Peer Selection
Problem, this is no longer the case in the full USApHMP. The main effect on the
heuristic is that we can no longer summarize the flow on the inter-hub edges as
2 |Va|+|Vb|. The following sum has to be used, instead: 3=,y > ey, wij + wji.
This would change the time complexity for calculating the cost of an inter-hub
edge from O(1) to O(n?). With the use of efficient data structures, however, the
calculation for the cost of a move can be achieved in O(n) time.

Data structures. In addition to the super-peers’ capacities we also store the
weights on the p? inter-hub links. WC(a,b) = 3¢y, > jev, Wij denotes the
weight on the link from super-peer a to super-peer b. In each move made by
the local search or the mutation these weights are changed accordingly. Only
the selection of a new super-peer does not change these weights. Also, the gain
calculations have to be adapted:

Greplace(i, k) = a- Y (WC(j,k) + WC(k, 7)) - (dej — dij)
jec

+ Y (x-0;+8-Dy) - (dr; — dij) (15)
JEVE



